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ABSTRACT -    A theoretical description of the dissipative phenomena in the wave dispersion related to the 

“energy-trap” effect in a thickness-vibrating infinite thickness-polarized piezoceramic plate with resistive 

electrodes is presented. The 3-D equations of linear piezoelectricity with quasi-electrostatic approximation 

were extended to include losses attributed to the bulk electro-mechanical damping in solid (complex material 

constants) and the resistance in electrodes. These equations were used to obtain symmetric and antisymmetric 

solutions of plane harmonic waves of arbitrary direction and to investigate the eigen-modes of thickness 

longitudinal (TL) up to 3rd harmonic and shear (TSh) up to 9th harmonic vibrations of odd- and even-orders. 

The effects of internal and electrode energy dissipation parameters on the wave propagation under regimes 

ranging from a short-circuit (s.c.) condition through the resonance of the RC-type relaxation dispersion to an 

open-circuit (o.c.) condition are examined in detail for PZT piezoceramics with three characteristic TL-mode 

energy-trap figure-of-merit 33 44
D Ec c� �  values – less, near equal and higher 4 – when the second harmonic 

spurious TSh  resonance lies below the fundamental TL resonance, inside its resonance-antiresonance 

frequency interval, and above the TL antiresonance, respectively. Calculated lateral wave-number dispersion 

dependences on frequency and electrode resistance are found to follow the universal scaling formula similar 

to those for dielectrics characterization. Formally represented as a Cole-Cole diagram of the complex lateral 

wave-number, the dispersion branches basically exhibit Debye-like and modified Devidson-Cole 

dependences. Varying the dissipation parameters of internal loss and electrode conductivity, the interaction of 

different branches was demonstrated by analytical and numerical analysis. 

     For the purposes of dispersion characterization of at least any thickness resonance near the wave-number 

origin, the following Theorem was stated: the ratio of two characteristic determinants, specifically constructed 

from the boundary conditions to describe the eigenmodes of the o.c. and s.c. piezoelectric plate, in the limit of 

zero lateral wave-number, is equal to the basic elementary-mode normalized admittance. As was found based 

on the Theorem, the complex lateral wave-numbers near the basic and non-basic TL and TSh resonances 

reveal some simple representations related to the respective elementary admittance and showing the 

connection between the propagation and excitation problems in a continuous piezoactive medium. 
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I. INTRODUCTION 

      Piezoplates made of piezoelectric ceramics [1],[2] with 6-mm symmetry are widely used as high-

frequency resonators, transducers, and monolithic filters employing thickness vibrational modes [3],[4].  

In an elementary theory neglecting transverse effects and other spurious modes influence, in a relatively thin 

piezoceramic plate 2bΨ×ϒ×  (Fig. 1a,b) with thickness polarization ( P
G

) and electrodes respectively on 

Ψ×ϒ  and 2bΨ×  plate surfaces, two basic thickness elementary TL- and TSh-modes can be excited [1],[5] 

by the uniform in the major plane electric field E∗
G

, with respective piezoresonator’s (PR) impedances Z:  

                                           2
33i 1 k tanS

t TL TLZ Cω⋅ = − Κ Κ ,                                                               (1) 

                                     ( ) 1 2 2
11 15 15i 1 k k tanT

TSh TShZ Cω
−

⋅ = − + Κ Κ� �    ,                                                (2) 

where 33 33 2S SC bε= Ψϒ  and 11 11 2T TC bε= Ψ ϒ  are the PR capacitance, 2 2
33 33 33k D S

t e c ε=  and 

2 2
15 15 44 11k D Se c ε=�  are the TL- and TSh-mode coefficients of electro-mechanical coupling (CEMC) squared,  

2 2 2
33
D

TL b cω ρΚ =  and 2 2 2
44
E

TSh b cω ρΚ =  are the TL and TSh elementary mode wave-numbers squared, 

2b  is the PR thickness, ρ  is the piezomaterial density, 2 fω π=  is the frequency, i 1= − . The standard [6] 

notations and the SI system of units are used for the material constants: piezocoefficients i je  ( ,i j i jh d ), 

dielectric permittivity ,T S
i jε at constant stress T and strain S, elastic stiffness ,E D

i jc  (compliance ,E D
i js ) at 

constant strength E and induction D of an electric field. To take into account internal losses, the material 

coefficients are phenomenologically expressed as complex [7] with respective imaginary parts responsible  

for mechanical, dielectric, and piezoelectric energy dissipation.  
 

Fig. 1 a,b . Thickness-polarized PR  plates with  

TL (a) and TSh (b) elementary vibrations. 

 
 

      The PR admittance is actually related to the extended concept of dielectric permittivity as a charge 

(induction)-to-voltage ratio. Then, the relationships (1),(2) can be expressed in a generalized form as an 

effective dielectric permittivity of a PR  

                              YS Zε ω⋅ = ℜ
�

       with          ( ) 12Y Y = i 1 k tanTL TSh≡ Κ Κ
∓� �

∓   ,                       (3) 

where ,YTL TSh

�
 is the dimensionless normalized admittance of the respective elementary mode, ℜ  is the PR 

dimension factor, then for the elementary TL-mode (Fig. 1a): TLΚ = Κ , 2 2k k t= ,  2bℜ = Ψϒ  , 33
S Sε ε= ; 

for the elementary TSh-mode (Fig. 1b): TShΚ = Κ  , ( )2 2 2 2
15 15 15k k k 1 k= ≡ −� � , 2bℜ = ϒ Ψ  , 11

S Sε ε= .  

The typical frequency responses of a PR have both the resonance rf  and antiresonance af  frequencies [6],[8]  
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determined by the real elastic stiffness ,E D
i jc� ; only odd-order harmonics ( 1,3,5...n = ) of the basic resonances 

can be excited in the elementary PRs. The resonance and antiresonance peaks sharpness is determined 

basically by the complex elastic stiffness , , ,(1 i )E D E D E D
i j i j i jc c Q= +�  with respective quality factors ,E D

i jQ  [9] 

whose difference can reach as much as 3 times due to high piezoeffect in piezoceramics.  

      In general, thickness vibrations of a real PR are very complicated due to the influence of competing 

modes and the effects that are caused by planar boundary conditions. Coupling of different modes typically 

occurs in the vicinity of the lowest fundamental thickness resonances [4],[7],[10]-[16], so that the basic TL-

mode with a coupled TSh vibration, or the basic TSh-mode with coupled flexure-twist vibrations, can provide 

under certain conditions the “energy-trapping” effect widely used in frequency selection devices. The PZT-

piezoceramics is characterized by the wide range of the figure-of-merit 33 44
D Ec c� �  from approximately 2.3 for 

far-tetragonal compositions up to 9 for soft piezoceramics near morphotropic phase boundary [1,2]. 

    The 3-D equations of linear piezoelectricity, including mechanical damping and electric conductivity, were 

used in [13] to obtain solutions of plane bulk harmonic Lamb waves [1],[14] in an infinite piezoelectric plate 

with general symmetry. Four lowest dispersion curves were computed and plotted for real frequencies and 

complex lateral wave numbers ( )ξ ω  in a wide frequency range near the fundamental resonances.  

All branches are complex due to dissipation, and there are no longer any cut-off frequencies as those existing 

for the non-dissipative waves where a significant characteristic change of dispersion curves occurs. The 

relatively newly discovered edge mode, which is a combined motion of the even-order TSh and odd-order TL 

vibrations, was explained theoretically [10] from a branch with complex wave-number. The fields distribution 

in a vibrating body can be calculated based on finite element method – boundary element method, however 

the connection of such a calculation with the dispersion relations is not obvious. 

       Useful dispersion properties can be extracted from a simple fact – by supposing the only condition that 

determinants of the characteristic matrices are even functions of both 2ξ  and 2ω  [4]. When the determinant 

equals zero, there is a root for dispersion relationship in the primary form 2 2( )mζ ω ,  then as a first-order 

approximation 2 2 2
0mζ ω ω∝ −  in a vicinity of the complex resonance with ( )2 2

0 0 1 i Qω ω= + , where 2
0ω  is 

proportional to the lossy elastic stiffness ( )1 ii jc Q+�  with the quality factor Q. It follows that at the 

resonance there is an absolute minimum ( )2 2
0 0im Qζ ω ω ω= ∝ ±  with the complex wave-number 

( ) ( )0 1 immin n Qζ ω ω= ≈ ± −   inversely proportional to Q  [15]. In piezoelectrics the difference 

(shift) between s.c. and o.c. branches near the resonance appears to be proportional to CEMC squared.  

     Ingebrigtsen’s approach [17],[18], primarily developed for the 1-D electrical behavior description of the 

surface acoustic waves in an interdigital piezo-transducer array, is based on the effective dielectric  

permittivity ( )ε ξ∗  concept. As ( )ε ξ∗  as a parameter of the surface potential distribution is an even function 

of the wave-number ξ , its frequency dependence between the s.c. resonance pole ( rξ ζ= ) and o.c. zero  
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antiresonance ( aξ ζ= ) provides a convenient approximate form 

                                                               
2 2

2 2
0

( ) a

r

ξ ζε ξ
ε ξ ζ

∗ −
≈ Γ ⋅

−
  ,                                                                 (4) 

where Γ  is a constant. Such approach, applied particularly to the 1-D elementary admittance (3) with the 

thickness wave-number K, is the basis for a simplified traditional equivalent circuit of a PR [1].  

    Further development of the concept was conducted in [19] for the harmonic admittance. As was formulated 

as a general theorem, if the appropriately defined dispersion equation for open electrodes is ( , ) 0ξ ω =G  to 

describe the eigenmodes ( )ocξ ζ ω= , and for short-circuited electrodes is ( , ) 0ξ ω =Φ  with ( )scξ ζ ω=  

of an infinite 1-D periodic surface electrode array, then the harmonic admittance of the piezoelectric structure 

may be always expressed as the ratio of two determinants 

                                                   1( , ) ( , ) ( , )Z ξ ω ξ ω ξ ω− = G Φ  .                                                      (5) 

The calculation of the harmonic admittance and finding the dispersion equations for the eigenmodes of the 

infinite periodic electrode array are usually considered as two independent concepts - the excitation problem 

and the propagation problem. It was shown that these two problems [19] are in reality very closely connected.  

    The thinner piezoplate thickness used in practice, the thinner electrode thickness is required and limited 

methods can be applied for electrode deposition. The electrode resistivity effect can not be properly described 

by discrete equivalent circuit elements with an additional resistance ( elR ), as such the PR is a system with 

distributed parameters involving local acoustic and electric interactions. The effect of resistive electrodes 

and/or bulk conductivity on elastic waves in piezoelectrics relates to a common phenomenon of  dielectric 

dispersion [18],[21]-[23]. Most of relaxation processes in dielectrics – frequency behavior of the effective 

complex dielectric constant ( ) Re i Imε ω ε ε∗ ∗ ∗= −  –  are generally described by the Havriliak-Negami 

empirical expression [22]-[24] with two exponential parameters 

                                                         0( )
1 (i )

βα

ε εε ω ε
ωτ

∗ ∞
∞

−
= +

⎡ ⎤+⎣ ⎦
  ,                                                         (6) 

where ε∞  is the high frequency permittivity, 0ε  is the static, low frequency permittivity, and RCτ =  is the 

characteristic relaxation time of the medium with effective resistive R  and capacitive C components.  

The exponents α  and β  describe the asymmetry and broadness of the corresponding dielectric dispersion 

curve, and depend mainly on the structure configuration (anisotropy degree). For 1β = , 0 1α< ≤  it is 

known as the Cole-Cole; for 0 1β< ≤ , 1α =  as the Davidson-Cole equation. The Debye expression with 

1β α= =  corresponds to a single isotropic relaxation mechanism describing the “loss tangent” in a dielectric 

medium, with a maximum in Imε ∗   at the dielectric resonance 1ωτ = . Traditionally plotted real and 

imaginary parts of the dielectric constant as a function of frequency is called a Cole-Cole diagram – an ideal 

semicircle arc for Debye dispersion, and linear at high frequencies and with arc-like shape at low frequencies  
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for Davidson-Cole dispersion.  

      As was shown from the dispersion equations for acoustic waves in conductive solid medium, such as 

piezoelectric semiconductors [25], the character of interaction of the elastic waves with free bulk charges 

(unit conductivity σ ) is largely determined by the effective complex dielectric permittivity 

                                               
1

i( )
i 1 i

T Tσ ωτε τ ε ε
ω ωτ

−

∗ ⎛ ⎞
= + = ⎜ ⎟+⎝ ⎠

 .                                                           (7) 

Free chargers are fully screening the electric fields in the wave at relatively low frequencies where wave 

velocity is determined by the elastic constant Es  under constant electric field E, the influence of free charges 

at relatively high frequencies are negligible and wave velocity is determined by the elastic constant 

( )21 kD Es s= −  under constant electric induction D. Clearly, the effective elastic compliance ( )s τ∗  behaves 

itself in the same way  forming the lateral phase velocity dispersion under bulk conductivity: 

                                 
2

2
2

i k 1( ) 1 k 1
1 i 1 k 1 i

E Ds s sωττ
ωτ ωτ

∗ ⎛ ⎞⎛ ⎞
= − = + ⋅⎜ ⎟⎜ ⎟+ − +⎝ ⎠ ⎝ ⎠

  ,                                         (8) 

where Tτ ε σ=  is the Maxwell  charge relaxation time, 2k  is the  respective material CEMC squared.  

    The dispersion dependences can be interpreted in the term of conductivity at a constant given frequency as  

τ  is mainly dependable on conductivity. In the literature, the interaction of acoustic waves in piezoelectrics 

with conductivity of free charges was described for various structures: bulk waves and conductivity in piezo-

electric semiconductors; surface waves  in a piezoelectric substrate with electrodes – fully covered or  

interdigital, metal or semi-conductive, located directly on the surface, or with a gap [20], as conductive fluid 

[21]. Because of high electromechanical coupling, the interaction of the bulk acoustic waves with the 

electrode system is relatively strong, and a velocity change as large as 50% can be achieved by altering the 

surface conductivity. The results obtained reveal great prospects of using such properties to create acousto-

electronic devices with controllable characteristics. A simple fixture principle, related to the problem, with 

two contact points on the resistive electrode was proposed [15] providing deep sharpening and exact deter-

mination of the PR resonances. The present original theoretical research is studying the influence of electrode 

resistivity on the dispersion of bulk plane acoustic waves near the thickness resonances of a lossy piezoplate. 
 

II. GOVERNING  EQUATIONS for PLANE WAVES in a PIEZOCERAMIC  PLATE 

    The plane waves in the x z−  plane of an infinite in both x-y directions and thickness-polarized plate  

(Fig. 2 a,b) are considered for certainty, so that no gradients exist in the y - direction. The relevant linear 

equations of piezoelectricity are as follows: 

                11 , 13 , 31 ,
E E

x x x z z zT c u c u e ϕ= ⋅ + ⋅ + ⋅   ,           13 , 33 , 33 ,
E E

z x x z z zT c u c u e ϕ= ⋅ + ⋅ + ⋅    ,   

                                               ( )44 , , 15 ,
E

x z x z z x xT c u u e ϕ= ⋅ + + ⋅    ,                                                    
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             31 , 33 , 33 ,
S

z x x z z zD e u e u ε ϕ= ⋅ + ⋅ − ⋅  ,       ( )15 , , 11 ,
S

x x z z x xD e u u ε ϕ= ⋅ + − ⋅   ,                          (9) 

where T  is the stress, E and D  are the electric field strength and induction, ϕ  is the electric potential with 

( ) , ( )x z x zE ϕ= −  ,  uG  is the mechanical displacement [13]. The equations of motion and charge are: 

          , t t , ,z z z x z xu T Tρ = +  ,              , t t , ,x x x x z zu T Tρ = +   ,                 , , 0x x z zD D+ =   .                 (10) 

All material constants are supposed to be complex, responsible for respective internal losses [7], time 

dependence is taken as i te ω+ . The common solution for plane waves can be expressed as exponential 

functions of z  and x  coordinates with respective thickness zK  and lateral xξ  wave-numbers: 

                           { } ( ) { } ( ), ,, , , exp i t i iz x z xz xu u x z A K z xϕϕ ω ξ= ⋅ − ⋅ − ⋅ ,                                              (11) 

or in a normalized (to half-thickness b) form: 

                              { } { }, ,, , exp(i t i i )z x z xu u A K z xϕϕ ω ξ= ⋅ − ⋅ − ⋅ ,                                                       (12) 

where { } { }, , , ,z x z xu u u u bϕ ϕ= ,  { , , } { , , }z x z xA A bϕ ϕ= ,  { } { }, ,z xK K bξ ξ= ⋅ ,  { } { }, ,x z x z b=  . 

 

        

     Fig. 2 a,b,c .  An infinite thickness-polarized 

piezoceramic plate with schematic mechanical and 

electrical (o.c., s.c.) fields thickness distribution shown for 

S- (a) and A- (b) configurations, and basics for the lateral 

dispersion parameter ξ  with the space decaying wave 

amplitudes in the major plane (c).       
 

 

      As schematically shown in Fig. 2c for a simple single vibrational mode, the complex lateral wave-number 

ξ  describes the plane wave with phase velocity vG  and wave-length λ , exponentially decaying with a 

characteristic distance 0x . The phase propagation direction depends on the Reξ  sign and, in general, is not 

indicative of the wave direction of energy transfer defined by the group velocity ω ξ∂ ∂  [14]. Clearly, energy 

conservation requires that the real part of  i xξ−  be negative, so that negative Im 0ξ <  provides physically 

correct attenuation with zero wave amplitude in the infinity for x →+∞ . Two types of independent 

orthogonal solutions exist, traditionally called “symmetric” (S-configuration) and “antisymmetric”  

(A-configuration) ones, following to the symmetry of the mechanical displacements ( xu ) in respect to the 

middle plane of a plate. Generally both these cases correspond to the elementary TL- and TSh-vibrations  

(Fig. 1) excited by the respective longitudinal (thickness-excited) [1] and transverse [5] electric fields E∗
G

.  

It is assumed further that the electrode mass does not cause any mechanical perturbations [13]. 
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A. Equations of Motion and Charge 

Substituting the equations of piezoelectricity (9) into the motion and charge equations (10), in a matrix form  

0
x

z

A
A
Aϕ

−
⋅ =B   ,      

( ) ( )
( ) ( ) ( )

( ) ( )

2 2 2 2 2 2
44 13 44 33 33 15

2 2 2 2
11 44 44 13 31 15

2 2 2 2
31 15 33 15 33 11

E E E E

E E E E

S S

K c c b c K c K e e

b c K c K c c K e e

K e e K e e K

ξ ω ρ ξ ξ

ω ρ ξ ξ ξ

ξ ξ ε ξ ε

+ − − + +

= − − − + − +

− + − + +

B   .   (13)                 

The determinant 0=B  must vanish for non-trivial solutions, which provides a bi-cubic characteristic equation 

( ) ( ) ( ) 23 2 22 2 2 2 2 2
33 15 31 15 31213 1311 44

2 2 2 2
44 11 33 33 33 44 33 44 33 44

2 2
11

2
44 33

2
1 1 1 1 k 1

E EE E

tE E D S D E S E D E

E

E D

e e e e ec cc cK K b c b
c c c c c c c c c

cK c b
c c

ω ρ ω ρ
ξ ξ ξ ξ ε ε

ω ρ
ξ

∗

∗

∗

⎧ ⎫+ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪− ⋅ − + − + + − − + + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

⎛ ⎞
+ ⋅⎜ ⎟
⎝ ⎠

( ) 222 2 2 2 2
15 31 2 13 15 31 13 1344 11 44 11

152 2 2
11 33 33 11 44 44 33 33 44 11 44 44 44

21 1 1 1 k 1 2 1 1
E E EE S E S

E D S S E E D S E S E E E

e e c e e c cc cb b
c c c c c c c c c c

ε εω ρ ω ρ
ξ ξ ε ε ξ ε ε∗

⎧ ⎫⎡ ⎤⎡ ⎤+⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎪ ⎪⎢ ⎥− − − + − − + + + + +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎢ ⎥⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

2 2 2 2
11 44 11

2 2
33 33 44 11 44

1 1 0 (14)
S D E

S D E E D

c c b b
c c c c

ε ω ρ ω ρ
ε ξ ξ

+

⎛ ⎞⎛ ⎞
+ − − =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

where ( )2
33 33 1 kE D

tc c= −  , ( ) ( )2 2
44 44 15 44 151 k 1 kE D Dc c c= − = +�   and  44 33 11 33 33 15 332E E S S Sc c c e eε ε ε∗ = + + .  

This 3-D problem is reduced to a 2-D one with coupled thickness and lateral wave-numbers common for both 

S- and A- configurations - there are three roots 2 2 2
( ) ( , )jK ξ ω  with respective sets { }, , ( )x z jA ϕ , where 1,2,3j =   

is the order of the roots (Appendix II-2). Solving (13) we particularly have for the amplitudes 

                                                   { } ( ) { }, , xz zA K A Aϕ ϕξ= ⋅ ⋅�  ,        where      

                  ( )( ) ( )( ){ }2 1 2 2 2 2
31 15 33 15 44 13 33 11

E E S S
zA H e e e K e c c Kξ ξ ε ε ξ−= ⋅ + + + + +�   ,                             (15) 

                 ( )( ) ( )( ){ }2 1 2 2 2 2 2 2
31 15 33 44 44 13 33 15

E E E EA H e e b c K c c c e K eϕ ξ ω ρ ξ ξ−= ⋅ + − ⋅ − ⋅ + + +� ,            (16) 

                              ( )( ) ( )22 2 2 2 2 2 2 2
33 44 33 11 33 15
E E S SH c K c b K e K eξ ω ρ ε ε ξ ξ= + − + + +                          (17) 

For further eigen-values consideration it is supposed 1xA =  in (15)-(17), so that  { } ( ) { }, ,z zA K Aϕ ϕξ= ⋅ � . 
 

B. Boundary Conditions for Short-Circuit  and  Open-Circuit  Regimes 

      The boundary conditions on major surfaces for mechanical stress are      

                                           
1

0z z
T

=±
=   ,                  

1
0x z z

T
=±

=  ,                                                            (18) 

and classical limit s.c. (ideal short-circuited electrodes) and o.c. (electrodeless plate with the electric potential 

floating freely and the current vanishing) electrical boundary conditions are 

                                          
1

0
z

ϕ
=±

=      (s.c.)  ,       
1

0z z
D

=±
=     (o.c.)  .                                             (19) 

The solutions for the S-configuration (basic TL-mode) are expressed in the form  

      
3

( ) ( )sin( ) cos( )x j x j jj
u x L A K zξ= − ⋅ ⋅ ⋅∑  ,       

3
( ) ( )cos( ) sin( )z j z j jj

u x L A K zξ= ⋅ ⋅ ⋅∑ ,           
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3

( ) ( )cos( ) sin( )j j jj
x L A K zϕϕ ξ= ⋅ ⋅ ⋅∑  ,                                                   (20)    

and the solutions for the A-configuration (basic TSh-mode) are   

         
3

( ) ( )cos( ) sin( )x j x j jj
u x L A K zξ= ⋅ ⋅ ⋅∑  ,       

3
( ) ( )sin( ) cos( )z j z j jj

u x L A K zξ= − ⋅ ⋅ ⋅∑ ,       

                                   
3

( ) ( )sin( ) cos( )j j jj
x L A K zϕϕ ξ= − ⋅ ⋅ ⋅∑  ,                                                        (21)    

The dimensionless jL  weighting coefficients mean equal relative shares of partial solutions with { }, ( )z jA ϕ   

amplitudes in each characteristic (20),(21). For the S- or A- (S|A ) cases, with respectively the s.c. and o.c.  

conditions on the electrodes  

1

0z

x z z

T
T

ϕ

=±

=  ,  then  
1

2

3

S|A 0
L
L
L

⋅ =Φ ,      and      

1

0
z

z

x z z

D
T
T

=±

=  ,   then   
1

2

3

S|A 0
L
L
L

⋅ =G   .            (22)   

To satisfy the above conditions and extract the primary non-trivial solutions 2 , 2 2( ) ( )sc oc
mξ ζ ω= ,  

the respective determinants of the boundary-conditions characteristic matrices must vanish 

                                S|A 0=Φ    (s.c.)          and           S|A 0=G     (o.c.).                                 (23) 

Conducting elementary transformations for the determinants, we have: 

 44 33 33
2 3

33

1S|A S|A
E E

S

c c eb
bε ξ

⎧ ⎫
= ⋅ ⋅ ⋅ ⎨ ⎬

⎩ ⎭
Φ M   and   44 33 33

2 3

1S|A S|A
E Ec c e

bξ
⎧ ⎫

= ⋅ ⋅ ⎨ ⎬
⎩ ⎭

G N   ,      (24-25) 

where for the S|A - configurations: 

33
( ) ( ) ( )1

33

S A sin cos ( )
S

j j jj
K A K

e ϕ
ε

= ⋅ ⋅M �∓  ,    

2 2 231 33
( ) ( ) ( ) ( ) ( )1

33 33

S A cos sin ( )
S

j z j j j jj

e K A K A K
e e ϕ

εξ
⎡ ⎤

= − ⋅ + ⋅ ⋅ ⋅⎢ ⎥
⎣ ⎦

N � �   , 

                 2 2 213 33
( ) ( ) ( ) ( ) ( )2 2

33 33

S A S A cos sin ( )
E

j z j j j jE Ej j

c eK A K A K
c c ϕξ
⎡ ⎤

= = − ⋅ − ⋅ ⋅ ⋅⎢ ⎥
⎣ ⎦

M N � � , 

                 15
( ) ( ) ( ) ( )3 3

44

S A S A 1 sin cos ( )z j j j jEj j

eA A K K
c ϕ

⎡ ⎤
= = − − ⋅ ⋅ ⋅⎢ ⎥

⎣ ⎦
M N � �  .                      (26)  

The determinants of the matrices S|AM  and S|AN  have the same dimension, and their corresponding 

pairs, SM  and SN , A ξ⋅M  and 1A ξ −⋅N , are finite at 0ξ → . Solving (14),(23) is a problem about  
eigen-values, or eigen-states, which provides the relationship between frequency ω  and lateral wave-number 

ζ  known as a dispersion relation. Final original solutions are symmetric in respect to the lateral wave-

number and are expressed in a mathematically correct form 2 2( )mζ ω , while for its application in the wave 

propagation physical analysis it needs to be transformed into ( )mζ ω  with the physical limitations mentioned. 

Note, as a further stage of analysis, for a real finite PR plate with a lateral boundary, its coupled frequency 
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spectrum can be found in a similar procedure with equal weighting shares of all partial solutions related to the 

roots mζ  in the  m-summation for planar directions [26]. 

 

 

Fig. 3. Typical surfaces of the S-configuration dispersion matrices 

(module of the complex determinants (24),(25))  in the 2ξ -plane for  

2 1ξ <  near the fundamental TL antiresonance with ( ) 0.03TLχ = −  

(70).  PZT-5A, 100Q = .   

 

 
 
 

C. Characteristic Matrices at the Dispersion Origin - The Theorem 

     Obviously, the characteristic dispersion matrices at the origin ( 0ξ = ) refer to an elementary 1-D case.  

The existence of such a presentation is formulated as a general Theorem, which is stated as follows:  

    Theorem. The ratio of two matrix determinants constructed from the boundary condition equations for  

a finite piezoelectric plate with the open-circuited and short-circuited major surfaces, with respectively 

S|AG  and S|AΦ  characteristic matrices in the symmetric S-configuration (antisymmetric  

A-configuration), in the limit of zero lateral wave-number 0ξ →  is equal to the normalized complex 

admittance Y
�

 of the basic elementary mode, particularly:  

for the S-configuration with the basic S-TL mode 

                             
( )

1

332

33 330

tanS
1 k i Y

S

D

t TLS D

b cb
b cξ

ω ρ

ε ω ρ

−

→

⎧ ⎫
⎛ ⎞⎛ ⎞ ⎪ ⎪− ⋅ = − ≡ − ⋅⎜ ⎟ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎪ ⎪

⎩ ⎭

G
Φ

�
  ,                    (27) 

for the A-configuration with the basic A-TSh mode 

                         
( )442 2

15
11 440

tanA
1 k i Y

A

E

TShS E

b cb
b cξ

ω ρ
ξ

ε ω ρ
−

→

⎛ ⎞⎛ ⎞
− ⋅ = + ≡ − ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

G
Φ

�
  .                     (28) 

   The proof of the Theorem is presented in Appendix I. Typical surfaces of the o.c. and s.c. dispersion  

matrices in the 2ξ -plane are shown in Fig. 3, and generally they represent right cones (linear) near the origin 

at 2 1ξ < . Basics for the Theorem are clear from the initial equations (9)-(11), where for 0ξ →  the only 

elementary TL-mode parameters ( 33 33 33, ,E Sc e ε ) are remaining (ξ  is a factor with all other material 

constants). In the contrary, the initial equations, being multiple or divided by ξ  ( or by 2ξ  totally for the  

matrix ratio (28)), have the only elementary TSh-mode parameters dominant and remaining at 0ξ → . 
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D. Piezoceramic  Plate  with  Electrodes  of  Finite  Conductivity 

D1. Electrical Boundary Condition  for a Dielectric  Plate  with  Resistive Electrodes 

     The basic equation describing the electrical potential distribution ( )xϕ  along the resistive non-inertial 

electrodes  with the unit conductivityσ  and thickness elh  can be established from the continuity of currents 

along the electrode (Fig. 4) - for an elementary electrode cell with length dx  (unit width) the difference of  

the currents on its left 1I  and right 2I  sides equals the current 3I  caused by the surface normal electrical 

inductance 
1z z

D
=±

. On the boundary “dielectric – resistive electrode”, there are equal tangent components of 

the electric field and equal normal components of the electrical induction (density of free charges q ) [23]. 

Note the positive z-direction is opposed to the circuitry loop direction in the plate, as shown in Fig. 4. Inside 

the upper electrode ( 1z = ) for the established space-coordinates, 1 2 3I I I− =  with ,x xE ϕ= − , then: 

         ( )1 21 2 ,el x x el xxI I h E E h dxσ σ ϕ+− = − = ⋅ ⋅ ,          3 , t , t iz zI q D dx D dxω+= = − ⋅ = − ⋅  ,             (29) 

                                                   , i 0xx el zR Dϕ ω+ + ⋅ =
�

 ,                                                                           (30) 

where 1el elR hσ=
�

 is the unit surface running electrode resistance. As a general equation for both electrodes 

                                               , 11
ixx el z zz

R Dϕ ω
=±=±

± = − ⋅
�

   ,                                                              (31) 

with  
1 1z z

ϕ ϕ
=+ =−

= −   and   1 1z zz z
D D

=+ =−
=    for symmetric S-configuration , 

and   1 1z z
ϕ ϕ

=+ =−
=   and   1 1z zz z

D D
=+ =−

= −   for antisymmetric A-configuration. 

 

 

Fig. 4. Schematic of the electric field configuration in 

a dielectric plate (bulk field zE
G

) with thin layer 

electrodes (surface field xE
G

). 

 

 

D2. “Discrete”  R-C (R-Z) Model – Introductory Parameters 

    The following introductory consideration covers the discrete R-C and R-Z simple models (like a classical  

3-1 piezocomposite), with respectively capacitive admittance and uncoupled elementary bulk impedance of 

the TL vibrations in the S-configuration, to explain further the results of general analysis. It is the case when 

the admittance of a plate segment at any frequency is strictly proportional to its square, so no lateral electric 
field components occur inside the plate body [28]. As 3 i 2I Cdxωϕ+= ⋅

�
  and 1

3 2I Z dxϕ −
+= ⋅
�

, respectively, 

where ( )0 33 2SC C bε=
� �

  and  1
0YTLZ Cω− =
�� �

 are the unit surface running dielectric capacitance and TL- 
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mode elementary admittance (1), then according to (30) for 
1z

bϕ ϕ ϕ± =±
= = : 

                                                        2
, 0x xϕ µ ϕ+ ⋅ =       with                                                                  (32) 

                             2 2i2 elb CRµ ω= −
� �

        and         2 2 2 elb R Zµ = −
� �

                                                   (33)  

respectively for a capacitive dielectric body and for a generalized  “uncoupled” case – all as discrete elements. 

The common solution for the surface potential is a set of exponential functions ( ) exp( i )x B xϕ µ= − ⋅ with 

two symmetric roots µ± , where B is a coefficient. 

     For a capacitive case 2 22i Pµ = − , then in the units of 0elP b CRω≡ >
� �

 there are roots ( )1 i P± − . 

For an infinite plate with 0x >   and  0x <  , and for a finite plate with a planar boundary, they are both in 

force. For an infinite plate with 0x >  (for simplicity and certainty), the only physically correct solution 

provides fully decaying wave in the infinity with Im 0µ < : 

                            ( ) 0 0 0 01 i i ielb CR P P P Pµ ω ω ω ω ω= + − ≡ ⋅ − ⋅ = −
� �

  ,                              (34) 

where 2 2
0 0 0 33( ) ( )S

elP b CR bω ω ε σ= ⋅
� �

∼  , 0ω  is some reference frequency (resonance). Only dispersion 

roots under such conditions will be further considered. Such electric field distribution corresponds to a case  

of phase-shift potential rotation along the electrode surface as a wave with the wave-number 2b Pλ π= , 

decay distance 0 2 0.5x b P=  and phase velocity v b Pω= +
G

 (Fig. 2c). 

      Analogously for the “uncoupled” TL elementary mode case, in a set of two roots Re i Imµ µ µ= + =   

2 2 elb R Z= ± −
� �

, the only one is taken into account with negative Im 0µ < . As the elementary PR 

admittance can be represented as 
11 1 1 iRe i ImZ Z Z Z e φ−− − −= + =

� � � �
, where ( )2, 2φ π π∈ − +  is its phase, 

then  

                                            ( ) 1i0.5 2 ele b R Zπ φµ
−+= − ⋅

� �
 .                                                                  (35) 

The PR impedance near the resonance has capacitive, inductive, or active character. At the TL resonance (r) 

or antiresonance (a) frequencies, when the elementary PR impedance is active ( )r aZ R=
� �

, the distribution  

parameter ( )i 2 el r ab R Rµ = −
� �

 is pure imaginary. The inductive character of Z
�

 provides the root 

( 1 i)µ ∝ − −   with Im 0µ <  and hence Re 0µ <  (opposite phase velocity to the capacitive case). From the 

three characteristic cases, it follows that for 0x >  the wave is always decaying, it travels in positive x-

direction outside the PR  resonance-antiresonance frequency interval (capacitive case with Re 0µ > ), and in 

opposite negative x-direction inside the resonance-antiresonance frequency interval (inductive case with 

Re 0µ < ). Such a transition is continuous on frequency, so that the case with Re 0µ =  corresponds to the 

resonance or antiresonance frequency (decaying distribution without space oscillations).  
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D3. Dielectric (Non-Piezoelectric) “Continuous” Plate  with  Resistive Electrodes  

      For a pure electrical case with zero piezoeffect in a dielectric plate, the actual thickness and lateral electric 

field distribution can be described with a similar eigen-value approach (9)-(11),(20),(21),(31) providing the 

relationship for the thickness and lateral wave-numbers 2 2 0K ν ξ+ =  from the charge equation, where 

11 33ν ε ε=  is the parameter of dielectric anisotropy. Finally there are two orthogonal equations for the 

S- and A-configurations, respectively 

                             ( ) 2tan i 2Pξ ξ ν ν⋅ =        and         ( ) 2cot i 2Pξ ξ ν ν⋅ = −                        (36) 

with 2 2
33 (0, )elP b C Rω= ∈ ∞
� �

. There are two infinite sets of solutions mξ ζ= with respectively {odd mΦ
�

}  

branches in S-configuration, and {even mΦ
�

} branches in A-configuration, 1,2,3,4...m =  (Figs. 5,6).  

For the lowest 1Φ
�

 branch at 1P << , there is { } ( )1 1 i Pζ
Φ
≅ −�  coinciding with those of the discrete model.  

For the branch at P →∞ , the lateral field distribution is as ( )exp 0.5 xπ−∼  with a characteristic decay 

distance 0 1x �  related to the edge-effect of field distribution from a dot surface charge.  

 
D4. Piezoceramic  Plate  with  Resistive Electrodes – Dispersion Equation 

    In the case of resistive electrodes, each elementary unit plate volume is acoustically coupled with and  

electrically loaded by surrounding regions. From (12),(31) it follows a general electrical boundary condition 

for both S- and A-configurations corresponding to resistive electrodes and taking an intermediate disposition 

between classical o.c. and s.c. regimes:  

                                          ( )2 2
1 1

i 0el zz z
R b Dξ ϕ ω

=± =±
⋅ ± − ⋅ =

�
 .                                                      (37) 

Then, together with the mechanical boundary conditions (22), the dispersion equation is:  

                                      2 2S|A i S|A 0elb Rξ ω⋅ − ⋅ =Φ G
�

 ,    or                                            (38) 

                                         2 2S|A 2i S|A 0Pξ ⋅ − ⋅ =M N                                                         (39) 

for corresponding S- (basic TL-mode) and A- (basic TSh-mode) configurations, where 1el elR h σ=
�

, 

0 33 2SC bε=
�

, 2 2
0 elP b C Rω ωτ= =
� �

,  2
0elb R Cτ =
��

 is the dielectric relaxation time. The matrix determinants 

(39) provide roots 2 2 ( )m Pξ ζ=  with their limit values for each branch ( 0) sc
m mPζ ζ→ =  of  s.c. and  

( ) oc
m mPζ ζ→∞ =  of  o.c. classical conditions. 

      According to the Theorem, for sufficiently small 2 1ξ << , we have (38) a root for the S-configuration: 

                  { } ( )
2

2 2 2 2 2
331

0

S
i Y 2

S
S

el el elTLb R b R b b R Z
ξ

ζ ω ω ε µ
Φ

→

≅ ⋅ = − ⋅ = − ≡
G
Φ

�
� � � � �

 ,                  (40) 
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so that it coincides with (33) for an “uncoupled discrete case”, is linear proportional to elR
�

 and elementary TL 

admittance 1Z −� , so that the origin 0ξ =  is a dispersion solution at 0elR →
�

 (ideal electrode) and forms a 

dispersion branch { }1 0scζ
Φ
=� . For the A-configuration  ( )2 2i A A 1elb Rω ξ −⋅ =G Φ

�
 , so that there is no 

solution at the origin 0ξ =  at 0elR →
�

.   

     According to (37), the surface free charges density occurs on the electrode accompanying the wave  
propagation ( )( )2

01
iz mz

q D C Pϕ ζ
=+

= − = ⋅
�

, where ( )0Cϕ ⋅
�

 is the pure capacitive charge. Note that  

at 0P →  the space-periodic potential amplitude 0ϕ →  on the getting equipotential electrode surface. 

 

 III. RESULTS  of  DISPERSION  ANALYSIS  and  DISCUSSION 
     The effects of internal dissipation and electrode resistivity in the range from the ideal electrodes (s.c.) 

condition through the RC-type relaxation resonance up to fully electrodeless (o.c.) condition on the wave 

propagation are examined in detail for PZT ceramics with three characteristic values of the TL-mode energy-

trap figure-of-merit ( )33 44 33 44
D E E Ec c c c =� � � � 3.0(2.4), 4.4(3.5), 7.0(5.4) – less, near equal and higher 4 – when the 

second harmonic spurious TSh resonance in the S-configuration lies respectively below the fundamental TL 

resonance, inside its resonance-antiresonance frequency interval, and above the TL antiresonance. The results 

of calculations of the lateral dimensionless wave-number ( , )m Pζ ω  dispersion branches up to as much as 

2π  in magnitude in their combined frequency and dissipation dependences for three corresponding  

piezoceramics are presented in MULTIMEDIA files: 1<S A>Μ   for PbTiO3 , 2 <S A>M   for 

PZT-35 , 3<S A>M   for PZT-5A [1],[2], respectively for S- and A-configurations. A low-frequency 

cumulative fragment for PZT-5A is presented in Fig. 5 a,b. In the conducted analysis the only D
i jc  elastic 

constants with their quality factors ,E D
i jQ Q=  were used as complex, while the other parameters involved in 

(9),(14) were taken as real, nevertheless providing the dielectric T
i jε  and piezoelectric i jd  constants complex 

as well as in the traditional approach [7]. The following frequency parameters ( ) ( )2 22 2 1 2 i jb cω ρ χ π= + �   

of the resonance frequency displacement 0 1χ ω ω= −  were used, where ( )0 2 i jb cω π ρ= �  with  

33
D

i jc c=� �  , ( :1)TLχ χ=  for S- (1), and 44
E

i jc c=� � , ( :2)TShχ χ=  for A- (2) configurations, corresponding to the  

major soft (TSh) and hard (TL) vibrational mode types [6],[8]. The “resonance” and “antiresonance” terms 

primarily refer here to the elementary normalized admittance ,Y TL TSh

�
  for certainty, accompanying with 

, 0oc sc
mζ →  of a corresponding branch as shown. 

    There are planar ( R
�

), odd-order  TL ( mE−� ) and even-order TSh ( mE+� ) mode branches for S-, and flexure 

( F
�

), odd-order TSh ( mE+� ) and even-order TL ( mE−� ) mode branches for A-configurations, and respective 

potential branches ( mΦ
�

). As the planar phase velocity of a wave is v Rebω ζ=
G

, then Re 0ζ >  corres- 
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ponds to forward-wave modes, traveling in positive direction, and Re 0ζ <  refers to backward-wave modes. 

 

 
 

Fig. 5 a,b . Cumulative dispersion branches 2 ( )m Pζ  (a)  and ( )m Pζ  (b) for both S-  and A-configurations  
of a lossy PR plate with resistive electrodes (39) at a frequency near the fundamental “A-TSh:1” resonance 
(PZT-5A). Inserted (a) shows a transformation from complex 2ξ -  to ξ -plane with major axes. The branches 
with notation in a frame relate to the A-configuration, without a frame – to the  S-configuration. The “ TLt n ”  

and  “ TShs n ”  branches are related to and form the respective n-order TL and TSh resonances. The 1ξ ≤  
circle (b) is the scope of the Statement (Chapter III-B). 
 
The 2ξ -plane representation of dispersion is more important for the mathematical analysis as a primary 

parameter of characteristic functions of certain symmetry, while the ξ -plane representation is more 

informative for practical applications in the wave propagation analysis. For the last one, mathematically, two 

solutions are close to each other with maximum interaction, when either they are close in the ξ -plane, or 

when they are both pure real (Fig. 5a, inserted). Particularly as seen from the MULTIMEDIA files, the edge 

mode [10] is a result of the 1E−�  TL and 1E+�  TSh  branches interaction. Note that according to conform 

reflections, a “half circle-to-circle” transformation takes place for a square function, so it seems there is no 

restriction on the 2ξ  sign. Major branches exhibit a clock-wise “rotation” with the resistance parameter P 

increasing. Comparing the presented branches classification with those in the classical Lamb wave description 

[14] for the modes propagating in the plate with predominantly real (lossless) wave-numbers, each branch  

mE±�  corresponds to a certain Lamb mode for the frequencies higher the corresponding thickness resonance, 

with the following relationships of notations: 0SR →
�

 Lamb mode, 121 SE±
< >→

�
, … for S- , and 0AF →

�
 

Lamb mode, 10 AE+ →
�

, 2 3,42 AE±
< >→

�
 , … for A-configuration, depending on the 33 44

D Ec c� �  parameter 

mostly for higher-order modes.  
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A. General Properties of  Dispersion Surfaces  

     The initial position of the dispersion characteristics can be considered as corresponding to 0ω →  for the 

limit s.c. and o.c. regimes and is close to presented in Fig. 5. According to the motion and charge equations 

(14), there are three roots ( )2 2

0
K

ω
ξ

→
 independent of 2ξ  at 0ω → : the first root ( )1 i Q− +� ∼  and two 

other complex conjugate roots 1 i 0.5− ± ⋅� . The exact solutions differing in the limits 0.2±∼  depend on 

elastic, dielectric, and piezoelectric anisotropy. Then, as can be seen from the boundary conditions, there are 

several infinite sets of eigen solutions (branches) 2
mζ . One set related to the first root provides the s.c. and o.c. 

solutions of “electrical potential” branches { }mΦ
�

 – particularly for the S-configuration i ( 1) 2sc
m mζ π− −�  

when (1)sin 0K � , and i 2oc
m mζ π−�  when respectively (1)cos 0K �   in the characteristic matrices  

(24)-(26), where 1,3,5...m = ∞  is the branch order. Similar s.c. and o.c. “potential” solutions exist for the  

A-configuration with accordingly zero cosine/sine and even branch orders 2, 4,6...m = ∞ . The other two 

conjugate roots basically provide two infinite sets of dispersion solutions for the respective TSh and TL 

complex branches { }mE±�  with near equal Im mζ  in each pair at least for 0ω ω<<  of any thickness  

(TL, TSh) resonance (Fig. 5b), so that:  

                                       ,
{ } {( 1) } { }

i Im i 2oc sc sc oc
m m mE

mζ ζ ζ π±Φ + Φ≅ ≅ ⋅ ≅ −� � �  ,                                                   (41) 

where 1, 2,3...m = ,  with { }1 0scζ
Φ
=�  and  

                                       ( )( ),
{ }

Re 4 1 0.4sc oc
mE

mζ π± ± +� � .                                                                   (42) 

      As the basic frequency factor in (14) is 2 2 2( )i jb cω ρ ξ− , with frequency increasing, the characteristic 

value ( )00.5ξ π ω ω≈ , where 0ω  is a fundamental thickness resonance, is a measure of consecutive  

distortion of the dispersion pattern formed by the TL and TSh  branches, when the 0m ω ω≈  order { }mE±�   

branches start moving toward the ξ -origin to form further the corresponding thickness resonances (see  

1,2,3<S A>M  files). Considering the electrode resistivity as a factor of the characteristic relaxation time 

2
0elb R Cτ =
��

  in 2P ωτ=  (39), the real and imaginary parts of ( ) Re ( ) i Im ( )m m mP P Pζ ζ ζ= +  are found 

to follow the universal scaling formula  –  the Cole-Cole diagram of the lateral complex wave-numbers 

remains very close to a semicircle for the { }R
�

, { }F
�

, and { }mΦ
�

 with 1m ≥  branches. 

     The relaxation dependences of the planar { }( )R P
�

 and flexure { }( )F P
�

 branches are found the following:   

                          { , } { , } { , }

1 i( ) Re Re
1 i 1 i

oc sc
R F R F R FP ωτζ ζ ζ

ωτ ωτ
≅ +Λ = −Λ

+ +
� � � � � �   ,                                   (43) 

where 2
{ , } { , } { , }Re Re 0.5k Resc oc sc

R F R F R Fζ ζ ζΛ = − ≅� � � � � �  is the semicircle width, k  is the corresponding CEMC. 

Note that for the branches at 2 1P ωτ= ≈ , the maximum wave energy loss inside the electrodes takes place. 
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Such an effect becomes obvious from the elementary planar mode classical description (as 0S , 0A  Lamb 

waves): the dimensionless lateral wave-numbers of a planar mode 2 2 2( )sc Eb sζ ω ρ= , 2 2 2( )oc Db sζ ω ρ≅ , 

where 2(1 k )D Es s= − , , , ,(1 i )E D E D E Ds s Q= −� , k  is the planar CEMC (for example, ,
11
E Ds , 31k ), then 

, , ,(1 i 2 )sc oc E D E Db s Qζ ω ρ≅ −� ,  2k 2sc oc scζ ζ ζ− ⋅� . For the resistive electrodes according to (8) 

2 2 2( ) ( )b sζ τ ω ρ τ∗= , so that the branch’s semicircle diameter is proportional to the planar CEMC squared, 

and is rising with frequency.  

   The relaxation dependences of the potential branches { }( )m PΦ
�

 obey the following:  

                      { } { } { }

1 i( ) i Im i Im
1 i 1 i

oc sc
m m mP ωτζ ζ ζ

ωτ ωτΦ Φ Φ

⎛ ⎞ ⎛ ⎞
≅ + Λ = −Λ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

� � �    ,                             (44) 

where { } { }Im Im 2sc oc
m mζ ζ πΦ ΦΛ = − ≅� � , 2,3, 4...m = , with maxima of { }Re ( )m Pζ Φ

�   at 1P ≈ .  

The first-order {1 }( )PΦ
�

 potential branch far enough out of any thickness resonance is described by the 

modified Davidson-Cole relaxation expression 

                                           ( ) {1 }
1 2{1 } 1

Im
i

1 (i )

oc

P
ζ

ζ
ωτ

Φ
Φ −

≅
⎡ ⎤+⎣ ⎦

�
�                                                                     (45) 

with {1 }Im 2ocζ πΦ ≅ −�  and the exponents 1 2β =  and 1α = −  (6), which is linear ( ){1 }( 1) 1 iP Pζ Φ −� � �  

at relatively low and with arc-like shape at relatively high electrode resistivity. The existence and main 

features of the “potential” branches (44),(45) can be explained by the “dielectric” approach (Chapter II-D3),  

which are not largely dependent on piezoeffect. 

 
Fig. 6. Lowest characteristic dispersion curves for a piezoplate and its electrical analogs:  ▬  actual exact 
dispersion (39), ──  dielectric (piezoless) model (36),  - - -  relaxation model (43-45) matched on o.c. and s.c. 
points, ─  ─  R-C model (34). S-configuration for a frequency much less any thickness resonances (PZT-5A). 
 

    The dependence of dispersion relationships on the relaxation time has been analytically and numerically  

determined, and the results are compared in Fig. 6 with those for the dielectric, relaxation, and R-C models.  

There are two major types of relaxation curves. The electrode resistance dependences of complex ( )mζ ωτ  

for the basic branches (out of their interaction), but 1Φ
�

, largely follow the Debye-like dielectric relaxation  
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(typical for a spherically isotropic structure) in terms of frequency and relaxation time. The last one (1Φ
�

) 

exhibits an asymmetric distribution of the modified Davidson-Cole functional form. The Cole-Cole 

semicircles of a Debye-type relaxation can be satisfactory modeled by an equivalent RC circuit chain with 

concentrated parameters [22],[23], where maximum dispersion corresponds to the relaxation dielectric 

resonance with 1RC ≈ . When the process is restricted to a constant angle with respect to some fixed axis 

(less “degrees of freedom”), approximate Davidson-Cole relaxation is found [23]. Relaxation effects of the 

vibration characteristics space distribution described here are part of the general relaxation phenomenon, 

supposing that time (transient-effects) and space relaxations are related for a distributed system.                 

    As seen from the 1,2,3<S A>M  files of the dispersion branches in their performance under frequency 

variation, when some branch distortion from the ideal form takes place, there is a strong electro-acoustical 

interaction with some other nearby branches in a higher degree dependent on dissipation parameters.  
 

B. First-Order Derivative Approximation for the Basic and Non-Basic TL and TSh  Resonances  

     In a generalized consideration, defining the function ( )F ξ  as a determinant SM  or A ξ⋅M , then  

the function ( )U ξ  as SN  or 1
33 11A ( )S Sε ε ξ −⋅N , respectively for S- and A-configurations (Appendix I),  

the functions are supposed to be analytical, symmetric of ξ  and finite at 0ξ → . Then at least for 
2 1ξ <<  they can be represented as: 

                                               2 2 2
0( ) 0.5 ( ) ...F F F Fξ ξ ξ′ ′′= + ⋅ + ⋅ + ,                                                (46) 

                                               2 2 2
0( ) 0.5 ( ) ...U U U Uξ ξ ξ′ ′′= + ⋅ + ⋅ + ,                                                (47) 

where the independent on ξ  coefficients are 

20 0
F F

ξ =
=   ,           2 2 ,, 00

0.5F F Fξξ ξξ ==
′ ′ ′′= =   ,          ( )2 2

(4)
,, 00

1 12F F Fξξ ξξ ==
′′ ′′= =   ;                 (48) 

20 0
U U

ξ =
=   ,        2 2 ,, 00

0.5U U U ξξ ξξ ==
′ ′ ′′= =   ,       ( )2 2

(4)
,, 00

1 12U U U ξξ ξξ ==
′′ ′′= =   .                (49)  

Considering (46),(47) as linear functions of 2ξ  (Fig. 3) in a first-order approximation, the dispersion roots  

at least near any thickness resonance with , 2( ) 1sc oc
mζ <<  can be found as follows: 

                                  ( ) 0F ξ = ,   then     ( ) 2

0
sc
m F Fζ

−
′≅ −  ,                                                               (50) 

                                   ( ) 0U ξ = ,   then      ( ) 2

0
oc
m U Uζ

−
′≅ −  .                                                            (51) 

According to the Theorem 0 0 i YU F = ⋅
�

, then  

                                      ( ) ( ) ( )2 2
i Yoc sc

m m F Uζ ζ ′ ′⋅ ≅ ⋅ −
�

  .                                                                  (52) 

If in an ideal fully lossless case the o.c. and s.c. branches intersect the ω -axis with , 0oc sc
mζ =  at any TL and 

TSh resonance and antiresonance frequencies, then in a lossy case they do not and reach the ξ -plane origin as 

close as the dissipation factors are low. Generally the graphic surfaces of the absolute functions ( )F ξ  and  
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( )U ξ  represent a right cone near the origin in the 2ξ - plane (Fig. 3),  and for this reason, as a consequence of 

a linear dependence, the corresponding roots for the lateral complex wave-numbers are directly related to the 

respective elementary normalized admittances ,Y=Y TL TSh

� �
. The comparative dispersion curves near the 

coupled fundamental S-TL and second-order S-TSh resonances derived with the first-derivative method and 

actual exact solutions are shown in Fig.7, which are in a good agreement. The elementary admittance ,Y TL TSh

�
 

with its the only basic resonances determines the specific features of the dispersion behavior near thickness 

resonances of any kind, which consequently are different for the basic TL and non-basic TSh modes in S-, and 

for the basic TSh and non-basic TL modes in A-configuration.      

                                     .                                                             

Fig. 7 a,b,c . Comparative o.c. and s.c. dispersion curves near the coupled fundamental “S-TL: 1n = ” and 
second-order  “S-TSh: 2n = ”  resonances for exact solutions (23) and those numerically obtained by the 
“first-derivative” method (50),(51)  for the three PZT-5A (a), PZT-35 (b), PbTiO3  (c)  piezoceramics. 
 

        The derivative of some 3x3 matrix determinant X  can be expressed as a sum of derivatives of the 

partial matrix elements with ( )sin cos jK  functions as in (22)-(26): 

    if   
1

2

3

X
j

j

j

X
X
X

=  ,  1, 2,3j =  ,    then    

2

2 2

2

1 , 1 1

2 2, 2 ,

3 3 ,3

X X
j j j

j jj

j jj

X X X
X X X
X XX

ξ

ξ ξ

ξ

′
′′ ′≡ = + +

′
  .                (53) 

       In the S-configuration the matrix derivatives (50),(51) are ultimately divided by 

0 cos K sin KTL TShU const∝ ⋅ ⋅ ,  and in the A-configuration they are divided by 

0 sin K cos KTL TShF const∝ ⋅ ⋅  (Appendix I). Each component of the sum for the matrix derivative contains 

a const from the first matrix column, sin cos K TL  functions as a factor from the second matrix column, and 

sin cos K TSh  functions as a factor from the third matrix column. Grouping the terms, the main body of the 

matrix derivative can be finally represented in general as follows, particularly for the S-configuration 
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(coefficients with a lower “~” sign): 

                                   ( ) ( )2 0

0 0 0

iYsc sc
m TL

UF F
F U F

ζ
− ⎛ ⎞′ ′
≅ − = ⋅ − ≡ Ω ⋅ −⎜ ⎟

⎝ ⎠

�
�

  ,                                                (54) 

                                                  ( ) 2

0

oc oc
m

U
U

ζ
− ′
≅ − ≡ Ω

�
 ,                                                                           (55) 

( )
0 1 2 3

0

tan K cot K tan K cot K1 1 1
2 K K 2 K 2 K

TL TSh TL TShsc oc sc oc sc oc sc oc sc oc

TL TSh TL TSh

F U
U
′ ′−

Ω = ≡ − ∆ −∆ − ∆ + ∆ =
� � � � �

               

                   0 1 2 3

tan K cot K1 1 1 2 1 2
2 4 K K

TL TShsc oc sc oc sc oc sc oc

TL TSh

θ θ θ θ
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − + − +
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠� � � �

  ,                         (56)                   

where 3 1 2θ = ∆ ∆
� ��

, 2 1 3θ = ∆ ∆
� ��

, 1 2 3 1θ = ∆ ∆ ∆
� � ��

, 0 0 1 2θ θ= ∆ +
�� �

  for the s.c. and o.c. regimes, respectively. 

The material dimensionless coefficients ,sc oc
i∆
�

, 0,1,2,3i = , are of the order of 1, their finite algebraic 

expressions do not contain trigonometric functions, particularly (Appendix II ):  

                            3 1(3)
s c ϑ∆ =
�

 ,                                                           ( )2
3 1(3) 1 2oc

TShϑ κ∆ = +
�

 ,               (57) 

 ( )2 2 233 33 15
2 1(2) 1(2)2 2

33 33

k k 1
D

sc
t t TLD S

c e e
b c

ϑ ν ϑ κ
ω ρ ε

⎧ ⎫⎛ ⎞⎪ ⎪∆ = − + ⋅ ≈ − ≅ −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭�    ,         2 1(2)

oc ϑ∆ =
�

 ,                       (58)  

2 2 233 15
1 1(3) 1(3)

44 33 44

k k1 1k 1 k
2 2

D
sc t

t tE D E

c
c c c

ϑ ϑ ν∆ = ℵ + ⋅ ≅ + ⋅ +
�

  , 

                                                                 

2

33 33 15
1 33 44 15

44 33 33

1 k k
D

oc D E
tE D S

c e e c c
c c

ν
ε

⎡ ⎤
∆ = ℵ+ ≅ + ⋅⎢ ⎥

⎣ ⎦�
  ,       (59) 

where  
( )33 31 1513 33

33 33 33 44

1 1
E D

D D S E

e e ec c
c c cε

+⎧ ⎫ ⎛ ⎞
ℵ= + + −⎨ ⎬ ⎜ ⎟

⎝ ⎠⎩ ⎭
 ,   2 2

1(2)kTL tκ ν ϑ= ,   2 2
15 1(3)kTShκ ν ϑ= . 

    Substituting (46),(47) into (39), we have the equation for ( ),m Pζ ω  in its electrode resistivity dependence 

as a first-order derivative approximation near the origin 2 1ξ << : 

                                       ( ) 1
4 2 2 22 i iY 2is c oc

TLP Pξ ξ
−⎡ ⎤Ω ⋅ + ⋅Ω − − ⋅ − =⎢ ⎥⎣ ⎦

�
� �

                                         

       ( ) ( ) ( ) ( )2 24 2 2 22 i iY 1 2i iY 0s c oc
m mTL TLP Pζ ξ ζ ξ

− −⎡ ⎤= ⋅ + − ⋅ − ⋅ − − =⎢ ⎥⎣ ⎦
� �

                            (60) 

There are two roots for ( )2 ,m Pζ ω , so two different branches exist near the origin forming the resonance.  

      Analogously for the A-configuration (coefficients with a lower “–“ sign): 

                                                   ( ) 2

0

sc sc
m

F
F

ζ
− ′
≅ − ≡ Ω   ,                                                                        (61) 



 

 

20

                                    ( ) ( ) 12 0

0 0 0

iYoc oc
m TSh

FU U
U F U

ζ
−− ⎛ ⎞′ ′

≅ − = − ≡ Ω ⋅ −⎜ ⎟
⎝ ⎠

�
 ,                                              (62) 

( )
0 1 2 3

0

tan K cot K tan K cot K1 1 1
2 K K 2 K 2 K

TSh TL TSh TLsc oc sc oc sc oc sc oc s c oc

TSh TL TSh TL

F U
F
′ ′−

Ω = ≡ − ∆ −∆ − ∆ + ∆ =                

                   0 1 2 3

tan K cot K1 1 1 2 1 2
2 4 K K

TSh TLsc oc sc oc sc oc sc oc

TSh TL

θ θ θ θ
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − + − +
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  ,                        (63)                   

where 3 1 2θ = ∆ ∆ , 2 1 3θ = ∆ ∆ , 1 2 3 1θ = ∆ ∆ ∆ , 0 0 1 2θ θ= ∆ +   for the s.c. and o.c. regimes, respectively. 

The material dimensionless coefficients ,sc oc
i∆ , 0,1,2,3i = , are of the order of 1, particularly: 

              ( )2
3 1(2) 1 2s c

TLϑ κ∆ = −  ,                                         3 1(2)
oc ϑ∆ =   ,                                             (64) 

             2 1(3)
s c ϑ∆ =   ,         ( )2 2 233 1544

2 1(3) 15 15 1(3)2 2
44 11

k k 1
E

oc
TShE S

e ec
b c

ϑ ν ϑ κ
ω ρ ε

⎧ ⎫⎛ ⎞⎪ ⎪∆ = + − ⋅ ≈ − ≅ +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 ,    (65)  

          233 15
1

44 33 44

k k1
D

sc t
E D E

c
c c c

ν∆ = ℵ ≅ +   , 

                      

2
2 233 33 15

1 15 1(2) 33 44 15 15 1(2)
44 33 33

1 1k 1 k k k
2 2

D
oc D E

tE D S

c e e c c
c c

ϑ ν ϑ
ε

⎡ ⎤
∆ = ℵ+ − ⋅ ≅ + ⋅ − ⋅⎢ ⎥

⎣ ⎦
  .     (66) 

Substituting (46),(47) into (39), we have the expression for ( ),m Pζ ω  in its electrode resistivity dependence 

as a first-order derivative approximation near the origin 2 1ξ << : 

               ( ) ( )
( ) ( ) ( )

( )

1 2 222
2

12 2

iY 2i2 i,
1 2 i iY iY 2i

s c ocs c oc
m mTSh

m

TSh TSh

PPP
P P

ζ ν ζνζ ω
ν ν

− − −

−
−

− +Ω + ⋅Ω
= =

+ ⋅ − − +

�

� �                 (67) 

where 11 33
S Sν ε ε= , with a single branch near the origin forming the resonance.. 

    The thickness wave-number derivative parameters 1( )jϑ  (Appendix II) involved can be easily found from 

(14) by differentiation. They are material dimensionless constants with typical values 1( ) 1 0.3 0jϑ ± >�  

including isotropic non-polarized state of a piezoceramic, do not depend on frequency (harmonic number) – 

only on elastic anisotropy and CEMC. As (54)-(67) describe the dispersion near a certain n-order thickness 

resonance, the 2n -factor appears in 2∆  as an approximation from 2 2 2 22 K 8 1n nπ� �  (70) vanishing at 

3n ≥  with typical 33 15 33 15,e e e e− < . The coefficients [ ]
,

11
0 2 2

33

1
E DS
i j

S

c
b

ε
ε ω ρ

⎡ ⎤⎣ ⎦∆ −� ∼  are determined by the 

respective terms related to the lowest potential (Φ
�

) and planar ( ,R F
� �

) branches roots, so that 0 0( ) 1θ∆ <≈  
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 are supposed to be not essential near a thickness resonance with ( )tan cot K →∞ . 

    As follows from (56) and (63) of the first-order derivative approach, the two coupled TL and TSh  

vibrational modes are separated as factors in their influence on the resulted lateral wave-number. Then, three 

major characteristic cases can be extracted: pure thickness modes, suppressing and gain a mode by another  

competing mode, depending on the 2 2
33 44 2.3...9.0D E

TSh TL c cΚ Κ ≅ ∈� �  elastic anisotropy parameter and the 

,sc oc
i∆  factors. Such a formal description is connected to the physical behavior of the { }mE±�  branches and 

their competitive interaction to form a TSh resonance. General variants of the basic and non-basic resonances 

relative disposition, and hence dispersion types for the S A -configurations, respectively, are:  

– (B1) “pure” basic mode odd-order resonance tan K 1TL TSh >>  with non-basic mode cot K 0TSh TL ≈ ; 

– (B2) “pure” non-basic mode even-order resonance cot K 1TSh TL >>  with basic mode tan K 0TL TSh ≈ ; 

– (B3) suppressed non-basic mode resonance cot K 1TSh TL >>  by the coupled basic mode with       

                                             21 2 tan K K 0TL TSh TL TShθ − �  ,                                                               (68)   

           and suppressed basic mode resonance tan K 1TL TSh >>  by the coupled non-basic mode with 

                                             31 2 cot K K 0TSh TL TSh TLθ + � ,                                                                (69) 

           which are satisfied with respective predominantly real coefficients according to (56) and (63); 

– (B4) minimal possible resonance dispersion (gain) due to exactly coincident resonances of the coupled basic  
          tan K 1TL TSh >>  and non-basic cot K 1TSh TL >>  thickness modes. 

     In the first two cases of “pure” modes, the dispersion of the TL and TSh  resonances is formed by the 

{ }mE−�  and { }mE+�  branches, respectively. The “suppressed” conditions (68),(69) relate to the competing 

{ }mE+�  and { }mE−�  branches to form a TSh resonance, generally with different  m-orders, which are 

simultaneously trying to reach the ξ -origin. Between these two conditions the joint TL and TSh resonance 

provides the pure imaginary dispersion with extremely large decay distance. Anyway, any TL resonance is 

always formed by a { }mE−�  branch. 

     For further presentation, the elementary mode thickness wave-number is expressed as: 

                    ( ),
1 11 1 i i

2 2 2 2 2TL TSh b c n n n
Q Q

π π π χω ρ χ χ
⎛ ⎞ ⎛ ⎞+

Κ = ≅ + − = + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

,                          (70) 

                                0( ) 1nf fχ = − ,         0( ) 4nf n c bρ= �  , 

where for TL-mode: 33
DQ Q= , 33

Dc c=  with ( )33Re Dc c=�  , 0( ) ( : )n TL nf f= , ( : )TL nχ χ= , TLn n=  ; 

and for TSh-mode: 44
EQ Q= , 44

Ec c=  with ( )44Re Ec c=�  , 0( ) ( : )n TSh nf f= , ( : )TSh nχ χ= , TShn n= .  

Decomposing it on small parameters of frequency displacement  χ  and losses 1Q−  near their poles 
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tan

odd n

Κ
= −Ξ

Κ
  ,      

cot

even n

Κ
= Ξ

Κ
  ,   where   2 2

8 1i
1 i

Q
n yπ

Ξ
+

�    ,                                  (71) 

with 2y Qχ=  generalized frequency displacement. Particularly, the relative frequency displacements 

( : )a TL nχ  and ( : )r TSh nχ  are taken in respect to the ( : ) 33 4D
a TL n TLf n c bρ= �  antiresonance  and  

( : ) 44 4E
r TSh n TShf n c bρ= �  resonance frequencies of the ,YTL TSh

�
 corresponding elementary mode with odd 

( , )TL TShn  harmonic numbers. Then, for the YTL

�
 (1) resonance 2 2 2

( ) ( ) 1 4r n a n t TLf f k nπ− −� , and for the 

YTSh

�
 (2) antiresonance 2 2 2

( ) ( ) 151 4a n r n TShf f k nπ− � . 

 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 8 a,b,c,d,e .  Complex generalized admittance ( ) 121 Y TL TShV k
±

= ⋅
�

∓  (3) and actual dispersion ratio 
2 2i ( ) ( )oc sc

m mW ζ ζ=  (23)  vs. frequency near the basic fundamental n = 1 and third n = 3  S-TL and A-TSh 
 harmonics for the three piezoceramics. Inserted – the real and imaginary parts (conductance, sucseptance)  

of the V and W characteristics. 
 

    As ( )F U′ ′−  in (52) is of the order of 1, the following Statement can be formulated and then is considered 

in details for the dispersion characterization at thickness resonances of any kind:  
       Statement. The ratio of the open-circuit 2( )oc

mζ  to short-circuit 2( )sc
mζ  lateral complex wave-numbers  

squared (as roots of S|A 0=G  and S|A 0=Φ  characteristic matrices, respectively) for a branch with 
, 2( ) 1oc s c

mζ <<  at least near any pure or coupled thickness resonance is largely determined by the respect- 

tive normalized elementary complex admittance ,Y TL TSh

�
 in its complex value and frequency dependence.  
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     It follows from the Statement that: a) the dispersion ratio near any basic odd-order thickness resonance-

antiresonance coincides with the respective admittance ,Y TL TSh

�
 regardless of the presence of any non-basic 

thickness resonance; b) near any non-basic even-order thickness resonance far enough out of any basic 

resonance the dispersion ratio is constant on frequency depending on the respective effective CEMC. Fig. 8 

illustrates the phase and amplitude satisfactory coincidence of the lateral dispersion ratio with the elementary 

complex generalized admittance characteristics near the basic TL and TSh resonances regardless of the 

presence of any non-basic thickness resonance, all under a simplified for representation condition for the 

effective CEMC TL tkκ �  and 15TSh kκ �  (56),(63) . The Statement is a useful practical estimate based on the 

Theorem and is a powerful tool for analyzing the interrelated PR excitation and propagation problems. 
 

B1.  Pure Basic  “S-TL:odd n”  and “A-TSh:odd n”  resonances.  

     Such a condition for the best performance is provided, for example, for the set of practical values 
2

33 44 (3 1) ,D Ec c =� � 2 2 2({5,7,9} 3) , ({9,11,13,15} 5) , ... ( )odd TSh odd TLn n= , when the odd-order TSh- and TL-

mode resonances coincide, respectively, and the dispersion branches near the ξ -origin are determined then by 

the predominant terms with ,
2
sc oc∆  coefficients in (56),(58) and (63),(65).  

B1-S.    For the pure basic “S-TL: odd n” resonances with tan K 1TL >>  when 2TLTL nπΚ �  for odd 

1,3,5...TLn = , near the frequency of some “TSh: odd n” resonance with cot K 0TSh ≈  (far enough from any  

non-basic even-order TSh resonance, as in an example  M1<S>  PbTiO3  for S-TL:3):    

                                      ( ) ( ) ( )
S :2 2 2i 1 Y

TL odd n
oc s c basic
m m TL TLζ ζ κ

−
≅ − ⋅

�
,                                                (72) 

                                ( ) ( ) ( )
S :2

2
1(2)

2 1
tan1 i Y

TL odd n TLsc basic
m

TLTL TL

ζ
ϑ κ

− Κ
≅ − ⋅ ⋅

Κ− −
�   ,                                   (73) 

                                             ( )
S :2

1(2)

2
tan

TL odd n TLoc basic
m

TL

ζ
ϑ

− Κ
≅ − ⋅

Κ
  ,                                                      (74)   

then at the resonance (r) and antiresonance (a) frequencies respectively 

                       ( ) ( )
22

2
1(2)

k2
1

sc t
m a

TL

ζ
ϑ κ

≅ ⋅
−

 ,                 ( )2 2

1(2)

2 koc
m tr

ζ
ϑ

≅ − ⋅   .                                             (75) 

Near the “S-TL: odd n” resonance, decomposing the expressions (73),(74) on relatively small parameters of 

loss factors and frequency displacements (71), we have   

                                         ( ) 2 S :

1(2) 2 2

4 1i
1 i

TL odd nsc oc basic
m r a

TL r a

Q
n y

ζ ϑ
π

− −
⋅

+
�   ,                                (76) 

with their absolute minimums  

                                               ( ) ( )
1(2)

1 i
2 2

sc oc TL
m

r a
r a

nmin
Q

πζ
ϑ

− ⋅� ,                                       (77) 
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where 2r a r a r ay Q χ=  is the generalized frequency displacement, the s.c. regime corresponds to the 

resonance (r), and the o.c. regime corresponds to the antiresonance (a) of the elementary admittance Y TL

�
 

with its resonance rQ  and antiresonance aQ  quality factors, and resonance ( ) 1r r nχ ω ω= −  and 

antiresonance ( ) 1a a nχ ω ω= −  relative frequency displacements. For the TL-mode [27], 33
E

rQ Q≅  at the 

fundamental harmonic 1TLn = , and  33
D

rQ Q≅   at higher harmonics with 3TLn ≥ , then 33
D

aQ Q=  for all TLn . 

    In the S-configuration, a TL resonance is formed by two 1Φ
�

 and mE−�  dispersion branches in the region of 

( ), 1m Pζ ω < . As found in [15], there are two frequency points of dispersion singularity near the resonance 

(see M1,2,3<S> ), where both the branches have equal wave-numbers (intersection) at a certain electrode 

resistivity. In a practical view, the dispersion point of singularity determines the range of dispersion linearity 

so important for some applications [15].  The singularity characteristics of the pure basic TL mode can be 

analytically derived from the quadratic equation (60) under the condition of a singular solution when its 

determinant equals zero with its real and imaginary parts vanish. As a result for 2 2 1t TLk Q n >> , the lowest 

“resonance” singularity (*) takes place at the resonance frequency displacement ( ) 1 1 2r n rf f Q∗ − −�  at 

2
22 sc

t r TLP k Q n∗ ⋅ ∆��
�

 with the joint for both branches lateral wave-number value ( ) 20.5 i sc
m TL rn Qζ ∗ − ⋅ ∆��

�
, 

and hence is mostly dissipative. The second “antiresonance” singularity takes place at the antiresonance 

frequency displacement ( )2 2 2 2
( ) 1 4 1 2a n t TL TLf f k nπ κ∗ − − ��   at 22 sc

tP k∗ ⋅ ∆��
�

 with the joint lateral 

wave-number value ( ) 2 21 0.5i 2 oc s c
m tkζ ∗ − ⋅ ∆ ∆� ��

� �
, and hence is mostly piezoelectric. 

 

B1-A.     For the pure basic “A-TSh: odd n” resonances with tan K 1TSh >>  when 2TShTSh nπΚ � , 

1,3,5...TShn = , near the frequency of some “TL: odd n” resonance with cot K 0TL ≈  (far enough from any 

non-basic even-order TL resonance, as in examples M1,2,3<A>  always for A-TSh:1; PZT-5A for A-TSh:3; 

PbTiO3 and PZT-35 for A-TSh:5):  

                              ( ) ( ) ( )
A :2 2 12i 1 Y

TSh odd n
oc sc basic
m m TSh TShζ ζ κ

− −
≅ + ⋅

�
 ,                                                    (78) 

                                             ( )
A :2

1(3)

2
tan

TSh odd n TShsc basic
m

TSh

ζ
ϑ

− Κ
≅ − ⋅

Κ
 ,                                                     (79) 

                           ( ) ( ) ( )A :2

2
1(3)

2 i Y
tan1

TSh odd n TShoc basic
m TSh

TShTSh

ζ
ϑ κ

− Κ
≅ − ⋅ ⋅ −

Κ+

�
,                                      (80)    

then at the resonance (r) and antiresonance (a) frequencies respectively 

                       ( )2 2
15

1(3)

2 ksc
m a

ζ
ϑ

≅ ⋅  ,               ( ) ( )
22 15

2
1(3)

k2
1

oc
m r

TSh

ζ
ϑ κ

≅ − ⋅
+

   .                                            (81)  
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Fig. 9 a,b .  Complex dispersion 
characteristics ( , )m P fζ  (39) 
near the basic A-TSh:1(a), :3(b)  
resonances for two quality 
factor’s D

i jQ  values, material 
constants for PZT-5A. 
 
 
 
 
 

  

Fig. 10 a,b,c .  Complex dispersion characteristics ( , )m P fζ  (39)  near the basic “S-TL:1”  resonance with  

quality factor D
i jQ =200 , material constants for PZT-5A (a), PZT-35 (b), PbTiO3  (c). Inserted – the Y TL

�  

characteristic with reference frequencies.  
 
Near the “A-TSh: odd n”  resonance, decomposing the expressions (79),(80) on relatively small parameters  

of loss factors and frequency displacement (71), we have   

                                         ( ) 2 A :

1(3) 2 2

4 1i
1 i

TSh odd nsc oc basic
m r a

TSh r a

Q
n y

ζ ϑ
π

− −
⋅

+
�   ,                             (82) 

with their absolute minimums  

                                               ( ) ( )
1(3)

1 i
2 2

sc oc TSh
m

r a
r a

nmin
Q

πζ
ϑ

− ⋅� ,                                        (83) 
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where 2r a r a r ay Q χ=  is the generalized frequency displacement, the s.c. regime corresponds to the  

resonance (r), and the o.c. regime corresponds to the antiresonance (a) of the elementary admittance YTSh

�
 

with its resonance rQ  and antiresonance aQ  quality factors, and the resonance rχ  and antiresonance aχ  

frequency displacements. For the TSh-mode [27], 44
D

aQ Q≅  at the fundamental harmonic 1TShn = , and  

44
E

aQ Q≅  at higher harmonics with 3TShn ≥ , then 44
E

rQ Q=  for all TShn . 

     In the both cases, each sc
mζ  and oc

mζ  wave-number has a minimum (77),(83) at the resonance and 

antiresonance, respectively. The minima are directly proportional to the harmonic number n, inversely 

proportional to the square root of the resonance or antiresonance quality factors [9],[27] of the respective 

elementary TL (TSh) mode, and do not directly depend on CEMC. The numerically calculated dispersion 

curves (39) and corresponding elementary normalized admittance amplitude-frequency characteristics are 

shown in Figs. 8-10 , which support the analytical results. 

 
B2. Pure Non-Basic (Spurious) “S-TSh:even n”  and “A-TL:even n”  resonances.   
     Such a condition for the best performance is provided, for example, for the set of practical values 

2
33 44 ({4,6} 2)D Ec c =� � , 2 2({8,10,12} 4) , ... ( )even TSh even TLn n= , when the even-order TSh- and TL-mode 

resonances coincide, respectively, and the dispersion branches near the ξ -origin are determined then by the 

predominant terms with ,
3
sc oc∆  coefficients in (56),(57) and (63),(64). 

B2-S.     For the pure non-basic “S-TSh: even n” resonances with cot K 1TSh >>  when 2TShTSh nπΚ � , 

2, 4,6...TShn = , near the frequency of some “TL: even n” resonance with tan K 0TL ≈  (far enough from any 

basic odd-order TL resonance, as in ex.: M1,2,3<S> PZT-5A and PbTiO3  for S-TSh:4,6; PZT-35 for S-TSh:4):  

( )
S :2

1(3)

2 tan
TSh even n

sc non basic
m TSh TShζ

ϑ

−
− ≅ Κ Κ   ,      ( ) ( )

S :2

2
1(3)

2 1tan
1 2

TSh even n
oc non basic
m TSh TSh

TSh

ζ
ϑ κ

−
− ≅ Κ Κ ⋅

+
 ,    (84) 

then                                      ( ) ( ) ( )2 2 121 2oc s c
m m TShζ ζ κ

−
≅ +   .                                           

Supposing i Y 1TL−
�

�  for an even TSh resonance located between some odd basic TL resonances, it follows 

that the wave-numbers ratio is a constant of frequency determined largely by the effective CEMC 2
TShκ  

corresponding to a TSh (even) resonance. Near the “S-TSh: even n”  resonance for relatively small frequency 

displacements (71)   

                                     ( )
S :2

1(3) 442 2

4 1i
1 i

TSh even n
sc Enon basic
m

TSh

Q
n y

ζ ϑ
π

−−
− ⋅

+
�   ,                                               (85) 

with the absolute resonance minimum  

                                     ( )
S :

1(3) 44

1 i
2 2

TSh even n
sc non basic TSh
m E

nmin
Q

πζ
ϑ

−
− −�   ,                                                  (86) 
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where 44 ( : )2 E
TSh ny Q χ= . It is directly proportional to the harmonic number TShn , and inversely proportional 

to 44
EQ  of the shear resonance quality factor only (Fig. 11 a,b).  

 

Fig. 11 a,b,c .  Complex dispersion characteristics ( , )m P fζ  (39)  near the pure non-basic S-TSh: 4(a), :6(b) 

and  A-TL: 2(c) resonances  for two quality factor’s D
i jQ  values, material constants for PZT-5A. The s.c. and 

o.c. points lie largely on the same ray shown for three frequency displacements. 
 

B2-A.     For the pure non-basic “A-TL: even n” resonances with cot K 1TL >>  when 2TLTL nπΚ � ,  

2, 4,6...TLn = , near the frequency of some “TSh: even n” resonance with tan K 0TSh ≈  (far enough from 

any basic odd TSh  resonance, as in an example M2<A> PZT-35  for A-TL:2): 

( )
A :2

1(2)

2 tan
TL even n

oc non basic
m TL TLζ

ϑ

−
− ≅ Κ Κ   ,       ( ) ( )

A :2

2
1(2)

2 1tan
1 2

TL even n
sc non basic
m TL TL

TL

ζ
ϑ κ

−
− ≅ Κ Κ ⋅

−
 ,     (87) 

then                                     ( ) ( ) ( )2 2 21 2oc s c
m m TLζ ζ κ≅ −  .                                              

so that the wave-number ratio is a constant determined by the effective CEMC 2
TLκ . Near the “A-TL: even n”  

resonance for relatively small frequency displacements (71)  

                                           ( )
A :2

1(2) 332 2

4 1i
1 i

TL even n
oc Dnon basic
m

TL

Q
n y

ζ ϑ
π

−−
− ⋅

+
�   ,                                          (88) 

with the absolute resonance minimum  

                                          ( )
A :

1(2) 33

1 i
2 2

TL even n
oc non basic TL
m D

nmin
Q

πζ
ϑ

−
− −�   ,                                             (89) 

where 33 ( : )2 D
TL ny Q χ= . It is directly proportional to the harmonic number TLn , and inversely proportional to 

33
DQ  of  the TL antiresonance quality factor only (Fig. 11 c). For the electrode resistivity dependence of  

the lateral wave-number with a screen effect related to piezoelectricity, we have according to (67): 

                                         ( ) ( )
222

2

2, 1
1 2i

oc TL
m mP

P
κζ ω ζ
ν

−− ⎛ ⎞
= −⎜ ⎟+⎝ ⎠

  .                                                     (90) 
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    Summarizing, it particularly follows from the Statement that the resonance ( )sc
mζ ω  and antiresonance  

( )oc
mζ ω  branches of the basic modes go consequently near the origin of dispersion plane, so that their ratio 

squared shows classical resonance-antiresonance character. Meantime, as there is no even-order resonances in 

the elementary mode admittance frequency characteristic (3), the branches of the non-basic modes go and 

both their absolute minima of ,sc oc
mζ  are reached simultaneously (at the same frequency). They both are 

located on the same ray (Fig. 11) near the resonance and their difference sc oc
m mζ ζ>  is pure piezoelectric, 

not dissipative. Note, there is equality oc sc
m mζ ζ≡  for a non-piezoelectric case with  ,iY 1TL TSh− =

�
. 

 

B3.  Suppressed Branch for Coupled  Basic  “S-TL: odd n”  with  non-Basic “S-TSh: even n” , 

       and for Basic  “A-TSh: odd n”  with  non-Basic “A-TL: even n”  resonances.   
   Any TL resonance (basic for S- and non-basic for A-configuration) is always formed by the respective 

mE −�  branch (Fig. 5). For a certain TShn -order  TSh resonance (even-order for S- and odd-order for 

A-configuration), it can be formed in two ways depending on the 33 44
D Ec c� �  ratio: by one of the upper mE +�  

TSh branches (Fig. 5) – pure TSh resonances under the (B1),(B2) conditions; or by one of the lower mE −�  TL 

branches (Fig. 5) when both coupled nearby TSh and TL resonances are formed consequently by the same 

mE −�  branch under the (B3),(B4) conditions between (68),(69) zeros. In the last case for the S-configuration,  

the “pushed out” mE +�  branch is forming the edge mode [10] of the corresponding order. 

   As typically 2 2
33 44
D E

TSh TL c cΚ Κ ≅ ∈� � 2.3…9, for coincident TL and TSh resonances ( )2 2
33 44
D E

TSh TLn c c n≅ >� �  

2
TLn> . In the case of S-configuration, for the non-basic TShn -order “S-TSh: even n”  resonance K TSh �  

44 0.5E
TShb c nω ρ π� � , then the thickness TL wave-number is 33 44K 0.5 D E

TShTL n c cπ≅ � � . As seen from 

the expression (56), the effect of the TL-mode influence on the TSh-resonance dispersion is largely 

determined by the sign and magnitude of the factor ( )21 2 tan K Ksc oc
TL TLθ−

�
. The inverse effect of   

the non-basic TSh-mode influence on the basic TLn -order  TL-resonance dispersion is largely determined by  

the sign and magnitude of the factor ( )31 2 cot K Ksc oc
TSh TShθ+

�
  with 33 44K 0.5 D E

TLTSh n c cπ≅ ⋅ � � .  

Analogues procedure can be performed for the A-configuration based on (63).  

     Typically the derivative coefficients 1(2,3) 1 0.3ϑ ±�  of the characteristic equation (14), so that the 

parameters (2,3) 1θ �  . After decomposing (68),(69) near the respective n-order resonance (71),  

the corresponding frequency displacements satisfying the aforementioned conditions are  

                                             2 2 2
2 38 1odd even odd evenn nχ θ π− ≈ −�� � .                                                  (91) 
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Note that the relative resonance frequency interval of an elementary mode 2 2
( ) ( ) 1a n r nf f k n− �  (71) is 

nearly 2k  less in magnitude. In common for both S- and A-configurations, it follows as an estimation that any 

TShn -order TSh resonance is formed by the mE −�  TL-branch if that resonance frequency is located near some 

TLn -order TL- resonance inside the interval of its relative frequency displacements ( )2 21 ... 1TL TShn n− +∼ . 

From the first-derivative approach analysis for the typical for PZT-ceramic interval of the 33 44
D Ec c� �  ratio it 

follows in particular that:  

–  the basic “A-TSh: 1TShn = ” resonance is always formed by the 0E +�  TSh-branch, and the non-basic  

   “S-TSh: 2TShn = ” resonance is formed largely by the 1E −�  TL-branch common with the basic  

   “S-TL: 1TLn = ” resonance;  

–  the non-basic “S-TSh: 6TShn = ”  for 33 44 3.8...5.1D Ec c ∈� � ∼  (M2<S> PZT-35) and  “S-TSh: 8TShn = ” for   

   33 44 6.9...9.0D Ec c ∈� � ∼  (M3<S> PZT-5A) resonances are formed by the 3E −�  TL-branch common with the  

    basic “S-TL: 3TLn = ” resonance, otherwise they both are formed by the respective mE +�  TSh-branch, 6,8m =  ; 

–  the basic “A-TSh: 3TShn = ” for 33 44 2.0...4.0D Ec c ∈� � ∼  (M1<A> PbTiO3) and “A-TSh: 5TShn = ” for  

   33 44 5.8...11.0D Ec c ∈� � ∼  (M3<A> PZT-5A) resonances are formed by the 2E −�  TL-branch common with the 

   non-basic “A-TL: 2TLn = ” resonance, otherwise they both are formed by the respective mE +�  TSh-branch, 3,5m = .  
The effect of transient conditions can be illustrated in M2<A> PZT-35  for the “A-TSh:3” and “A-TL:2”  

resonances. 
 
   Due to separation of the TL and TSh modes influence on the dispersion as factors in the first-order deriva-

tive approach, as seen from Fig. 8a,b  for the basic “S-TL: 1” resonance, there is no distortion from the TSh-

mode in the dispersion 2 2i ( ) ( )oc sc
m mW ζ ζ=  characteristic, and it fully follows the elementary admittance 

TLY
�

. According to the numerical analysis conducted, the coincidence of the dispersion W- and admittance  

V-characteristics takes place for both amplitude (typically no more then several  dB) and phase representation.  
 

B4.  Exactly Coinciding Basic  “S-TL: odd n”  with  non-Basic “S-TSh: even n” ,  

       Basic  “A-TSh: odd n”  with  non-Basic “A-TL: even n”  resonances.   

B4-S.      For the basic “S-TL: odd TLn ”  and non-basic “S-TSh: even TShn ”  resonances with tan K 1TL >>  

and cot K 1TSh >>  together, it follows 2TLTL nπΚ �  for odd 1,3,5...TLn =  and 2TShTSh nπΚ �  for even 

 2, 4,6...TShn =  . Such a condition is provided, for example, for practical values  2
33 44 (2 1) ,D Ec c =� � ∼    

2 2({6,8} 3) , ({8,10,12,14} 5) , ... ( )2
TLeven oddTShn n= ,  when an even-order “S-TSh: n” and an 

odd-order “S-TL: n” resonances coincide, respectively. The dispersion branches near the ξ -origin then are  

determined by the predominant terms with ,
1
sc oc∆
�

 coefficients in (56),(59) as follows: 
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                                  ( ) ( ) ( )
S- :  2 2

&
1 1S- :  

i Y
TL odd n

oc s c s c oc
m m TLTSh even n

ζ ζ ≅ ∆ ∆ ⋅
�

� �
  ,                                            (92) 

                           ( ) ( )S- :  2
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i Y

TL odd n TSh TLsc sc
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                                  ( )
S- :  2

&
1S- :  

cot tanTL odd n TSh TLoc oc
m TSh even n

TSh TL

ζ
− Κ ⋅ Κ

≅ −∆
Κ ⋅Κ�

   .                                               (94)  

Decomposing (93),(94) on relatively small parameters of loss factors and frequency displacement (71), when 

a non-basic TSh resonance cot K TSh →∞  coincides with a basic TL antiresonance tan K TL →∞  with 

0 ( : ) ( : )r TSh even n a TL odd nf f f≡ = , then 

                                        ( )
2S- :  

.
&

S- :  
1 33 44

i
8

TL odd n
oc antires TL TSh

m oc D ETSh even n

n n y
Q Q

πζ ⋅ − +
∆

�

�

  ,                                                 (95) 

where 2y Qχ=  and Q  here is the mean of 33
DQ  and 44

EQ . It behaves linearly (Fig. 12a) on the relative 

frequency displacement 0 1f fχ = −  (71), is pure imaginary at the TL antiresonance with its absolute 

minimum value ever possible proportional to 1 Q . For the s.c. wave-number frequency dependence 

              ( )
2S- :  

2.
& 44 33 2 2

S- :  
1 33 44

4i 1 i 2 1 i 2 k
8

TL odd n
sc E Dantires TL TSh

m tsc D ETSh even n TL

n n Q Q
nQ Q

πζ χ χ
π

⎡ ⎤⎛ ⎞
≅ − ⋅ + ⋅ + +⎢ ⎥⎜ ⎟

∆ ⎝ ⎠⎣ ⎦�

  ,          (96) 

with its absolute antiresonance (a) and resonance (r) minima values corresponding to 1± , 44 33
E DQ Q Q= ,  

respectively, for 2 1tk Q�  (Fig. 12a) 

                                     ( )
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.
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( 1 i) k
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TL odd n
antiressc TSh

m ta r sc
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Q

πζ ≅ ± − ⋅
∆
�

   ,                                     (97) 

which is proportional typically to 1 Q  and additionally to CEMC.  

     Analogously, when a non-basic TSh resonance cot K TSh →∞  coincides with a basic TL resonance 

YTL →∞
�

 with 0 ( : )r TL odd nf f≡ ( : )r TSh even nf=  and joint frequency displacement 0 1f fχ = − , then 

                                       ( )
2S- :  

.
&

S- :  
1 33 44

i
8

TL odd n
sc res TL TSh

m sc D ETSh even n

n n y
Q Q
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�

�

    ,                                                (98) 

where 2y Qχ=  and Q  here is the mean of 33
DQ  and 44

EQ . For the o.c. wave-number frequency dependence 
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4i 1 i 2 1 i 2 k
8

TL odd n
oc E Dres TL TSh

m toc E DTSh even n TL

n n Q Q
nQ Q

πζ χ χ
π

⎡ ⎤⎛ ⎞
≅ − ⋅ + ⋅ + −⎢ ⎥⎜ ⎟

∆ ⎝ ⎠⎣ ⎦�

  ,             (99) 

with its absolute antiresonance (a) and resonance (r) minima values corresponding to 1± , 33 44
D EQ Q Q= ,  

respectively, for 2 1tk Q�  (Fig. 12b) 
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Fig. 12 a,b. Complex dispersion characteristics 

( , )m P fζ  (39)  near the basic “S-TL:1”  and 

non-basic “S-TSh:2”  resonances with their 

“antiresonance” (a) and “resonance” (b) 

coincidence. Material constants for PZT-35  

type, D
i jQ = 200 , 10

44 10 5.82( ),5.03( )Dc a b−⋅ =� . 

Inserted – the Y TL

�
 characteristic with the 

reference frequencies. 

 
 

For both above cases, the maximum (“peak”) values of Im mζ  are respectively ( 2 1tk Q� ) 
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  .                                       (101)     

The exact coincidence of the “S-TL:1” and “S-TSh:2” resonances provides (98) extremely low 2 Q∼  

completely imaginary s.c. lateral wave-number at the thickness resonance with decay distance 0 2 4x b Q≈ , 

which in practical view can afford sufficiently widened effective radiating surface of a transducer. From the 

approximations (54),(55) it follows for the coupled case that the absolute minimum in (95) and (98) is near 

equal to the product of respective minima (77),(86) and (83),(89) for the pure basic and non-basic modes:    

                                           1 2min min min
fully pure pure

coupled basic non basic
m m mζ ζ ζ −⋅�   .                                        (102) 

 

B4-A.   For the basic “A-TSh: even TLn ”  and non-basic “A-TL: odd TShn ”  resonances with tan K 1TSh >>  

and cot K 1TL >>  together, it follows 2TShTSh nπΚ �  for odd 1,3,5...TShn =  and 2TLTL nπΚ �  for even 

2,4,6...TLn = . Such a condition is provided, for example, for practical values 2
33 44 ({3,5} 2) ,D Ec c =� �  

2({7,9,11} 4) , ... ( )2
TLodd evenTShn n=  ,  when an odd-order “A-TSh: n” and an even-order “A-TL: n”  

resonances coincide, respectively. The dispersion branches near the ξ -origin then are determined by the 

predominant terms with ,
1
sc oc∆  coefficients in (63),(66) as follows:           
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   Decomposing (104),(105) on small parameters of losses and frequency displacement (71), when a non-basic 

TL resonance cot K TL →∞  coincides with a basic TSh resonance tan K TSh →∞  with 0 ( : )r TL even nf f≡ =  

( : )r TSh odd nf= , then 

                                    ( )
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&
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i
8

TSh odd n
sc res TL TSh
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where 2y Qχ=  and Q  is here the mean of 33
DQ  and 44

EQ . It behaves linearly on frequency displacement 

0 1f fχ = −  (71), is pure imaginary at the TSh resonance with its minimum absolute value ever possible 

proportional to 1 Q . For the o.c. wave-number frequency dependence 
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with its absolute antiresonance (a) and resonance (r) minima values corresponding to 1± , 44 33
E DQ Q Q= , 

respectively, for 2
15 1k Q�  
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     Analogously, when a non-basic TL resonance cot K TL →∞  coincides with a basic TSh antiresonance 

Y 0TSh →
�

 with 0 ( : )r TL even nf f≡ ( : )a TSh odd nf=  and joint frequency displacement 0 1f fχ = − , then 
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where 2y Qχ=  and Q  is here the mean of 33
DQ  and 44

EQ . For the s.c. wave-number frequency dependence 
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with its absolute antiresonance (a) and resonance (r) minima values corresponding to 1± , 33 44
D EQ Q Q= , 

respectively, for 2
15 1k Q�  
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For both above cases, the maximum (“peak”) values of Im mζ  are respectively ( 2
15 1k Q� ) 
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                                                          IV. CONCLUSION 

    The 3-D equations of linear piezoelectricity, including electro-mechanical damping in solid and resistance 

in electrodes, were used to obtain solutions for lateral dispersion characteristics of descending plane harmonic 

waves of arbitrary direction in an infinite thickness-polarized piezoceramic plate with traction-free surfaces. 

The effects of cumulative energy dissipation on the wave propagation under regimes raging from the s.c. 

condition through the relaxation RC-type dispersion resonance to the o.c. condition are examined in detail for 

PZT piezoceramics with three characteristic values of the TL-mode energy-trap figure-of-merit 33 44
D Ec c� �  –  

less, near equal, and higher 4. The symmetric and antisymmetric eigenmodes of TL up to 3rd harmonic and 

TSh up to 9th harmonic vibrations of odd- and even-orders were analyzed analytically and numerically.  

     All branches can not be pure real any longer due to dissipation and significant characteristic changes of the 

dispersion curves occur mostly near the cut-off frequencies inherent to non-dissipative waves. Varying the 

dissipation parameters of internal loss and electrode resistance, the interaction of different branches was 

demonstrated – deformed and inter-connected dispersion branches with singularities take place due to 

acoustical and electrical coupling between surrounding regions of the plate. 

      The electrode resistivity effect is primarily described by the relaxation time parameter τ  of unit surface 

running electrode resistance and PR capacitance. The extracted dispersion surfaces are located between and 

connect the respective classical limit dispersion s.c. (ideal electrodes) and o.c. (electrodeless) branches of 

planar, TSh and TL modes, and “electric potential” branches. The calculated dispersion dependences on 

frequency and electrode resistance are found to follow the universal scaling formula similar to those for the 

dielectrics characterization. Represented as a Cole-Cole diagram of the complex lateral wave-number, most 

dispersion branches exhibit a Debye-like semicircle dependence with extremum at 1ωτ � . The lowest 

“potential” branch, going out from the wave-number origin at a frequency out of any thickness resonances, 

obeys the modified Devidson-Cole dependence linear as ( )1 i ωτ−  for relatively low electrode resistances, 

which corresponds to the laterally uncoupled elementary space-regions. For the basic TL resonances of any 

order, the dispersion branch slope near the origin follows the character of the corresponding elementary TL- 

mode admittance: with the direction ( )1 i−  for its capacitive character out of the resonance-antiresonance 

frequency interval, ( )1 i− −  for its inductive character inside the resonance-antiresonance interval, and  

( )0 i−  exactly at the resonance and antiresonance frequencies.  

      Stated as the Theorem, the determinant ratio of the o.c. to s.c. characteristic matrices in the S- (A-)  

configuration in the limit of zero lateral wave-number equals the corresponding elementary normalized 

complex admittance of the TL(TSh)-mode. The dispersion branches of any thickness resonance tend to reach 

the origin with the absolute minimums inversely proportional to the quality factors and respective first-order 

derivatives of the characteristic equation. The developed first-derivative approach based on characteristic 

matrices differentiation reveals a simple presentation and explanation of the coupled TL-TSh modes 
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dispersion behavior near the thickness resonances, showing the close connection between the propagation and 

excitation problems in a homogeneous medium. Separating the TL and TSh resonance factors, it was stated 

based on the Theorem that the ratio of the o.c. to s.c. lateral wave-numbers squared near the basic and/or non-

basic thickness resonances is largely determined by the corresponding complex elementary admittance. As a 

consequence, the frequencies and bandwidth of the resonance dispersion minimums coincide with those for 

the elementary admittance; for the basic modes, the ratio of their consecutive s.c. and o.c. minimums is 

determined by the ratio of the resonance and antiresonance quality factors of the elementary admittance; and 

for the non-basic modes, the ratio of simultaneous s.c. and o.c. dispersion minimums is determined by the 

corresponding effective CEMC. The exact coincidence of the basic and non-basic thickness resonances for 

certain 33 44
D Ec c� �  ratios provides minimal resonance lateral dispersion ever possible.   

    Real PR electrodes are resistive – that adds extra energy losses and hence changes the wave dispersion 

relationships. It especially becomes significant for up-to-date thin high-frequency PRs with large major 

surfaces when the lateral vibration characteristics distribution is critical. The developed approach can be 

applied to a piezoceramic plate with polarization direction along the major surfaces (a “shear” plate), and  

to piezoelectrics of different symmetry. 
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Appendix I :   Proof of the Theorem 

I-A.  Proof  for  the  S-configuration (basic TL-mode): 

        The determinants of the matrices SM  and SN   (24)-(26) with generalized elements i jp  are both of  

the same dimension and are finite at 0ξ → . They can be represented with non-zero elements as  
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I-B.  Proof  for  the A-configuration (basic TSh-mode): 

The determinants of the matrices AM  and AN   (24)-(26) are both of the same dimension and at 0ξ →  

the expressions ( ) AF ξ ξ≡ ⋅M  and ( ) 1
33 11( ) AS SU ξ ε ε ξ −≡ ⋅N  are finite. They can be represented with 

non-zero elements i ja  as 
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As (2) (0) TLK ≡ Κ , (3) (0) TShK ≡ Κ   and  2 2
33 33 33k D S

t e c ε= , 2 2
15 15 44 11k E Se c ε= ,  the Theorem is proven. 

 
 
 

Appendix II:   Proof sketch - Basics for the Statement substantiation: 

   Generally the thickness ( )jK  wave-numbers (14) can be represented near the 2ξ -origin as 

                      2 2 2 2 2 2 2 3
( ) ( ) 1( ) 2( ) 3( )( ) (0) (1 2) ( ) (1 6) ( ) ...j j j j jK Kξ ϑ ξ ϑ ξ ϑ ξ= − ⋅ − ⋅ − ⋅ +   ,                   (II-1) 

where      2
(1) (0) 0K = ,       2 2 2 2

(2) 33(0) D
TLK b cω ρ= ≡ Κ ,        2 2 2 2

(3) 44(0) E
TShK b cω ρ= ≡ Κ ,               (II-2) 

{ } 2

( )2
( ) ( ) ,

(0)
i

i j jK
ξ

ϑ = −  is the i-order derivative, 1, 2,3.j =  In an isotropic non-piezoelectric case with the 

only single dielectric permittivity, elastic and Poisson constants, the derivatives 1( ) 1jϑ = , 2( ) 0jϑ = . For the 

polarized isotropic piezoceramics under consideration, 1(1) 11 33
S Sϑ ε ε=  and 1(2,3) 1 0.3ϑ ≅ ±  depending on 

elastic, dielectric, and piezoelectric anisotropy, and they are independent of frequency (exact expressions):  
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The second-order derivatives ( )2 2
2( ) 44

E
j c bϑ ω ρ∝Θ⋅  are inversely proportional to the frequency squared in 

presence of piezoelectricity (the parameter of anisotropy 0Θ =  for isotropic non-piezoelectric case), and 

2( ) 1jϑ ≈  for the lowest fundamental thickness resonances, and is much less 1 at higher harmonics, so that  
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                                                               Glossary 

0,ϕ ε                                     –    electric potential and vacuum dielectric permittivity  
,

( ), , ,E D
m i j r aQ Q Q Q        –    standardized material, elastic constant’s, PR resonance (antiresonance) and 

                                                     generalized quality factors                        

( ), ,E D E D
i j i jc s , ( , )i j i j i je h d , ,T S

i jε     –  complex piezomaterial constants (real ones are with an upper point)  

11 33, S Sρ ν ε ε=                    –     material density and dielectric anisotropy parameter                 

,s ε∗ ∗                                      –     effective elastic compliance and dielectric permittivity                 

15 15 31k , k (k ), k , kt p
�        –    complex CEMC (generalized notation k  with its real value k ) 

, , ,D E T S                        –     electric field induction and strength, mechanical stress and strain               

{ } ( ),
0 33 3333, 11 2T S S SC C C bε≡ =
� �

   –   PR capacitance (unit surface value)    

2 , , 2f y Qω π χ χ= =      –     angular frequency, relative and generalized frequency displacements 

, ,r af f n               –   resonance (r) and antiresonance (a) frequencies, harmonic order of the elementary admittance Y
�

 

, ( , )x z x z  and  ,x zu u     –    space coordinates (normalized) and local respective displacements 

, , 2 , Pbϒ Ψ
G

                       –   length, width and thickness of an elementary PR, and its polarization direction                                        

B                                            –  characteristic matrix of motion and charge equations  

S|A , S|AΦ G   and  S|A , S|AM N     –  s.c. and o.c. characteristic matrices of boundary conditions, 

                                                     and corresponding determinants for S- and A- configurations, respectively 

{ } { } { }( ), , , , , ,, , jz x z x z xA A A Lϕ ϕ ϕ
�   –   characteristic amplitudes and weighting coefficients in eigen-mode solutions 

, ( )TL TShΚ Κ Κ               –  wave-number of 1-D elementary TL and TSh vibrations (generalized notation) 

Y , Y , YTL TSh

� � �
                   –  normalized complex admittance of the elementary (non-coupled) TL and TSh  mode,  

                                                    and their generalized notation 
,K ξ                                      –  coupled complex thickness and lateral wave-numbers                                  

( )i jϑ                                        –   i-order derivative { } 2

( )2
( ) ,

i

jK
ξ

−  of  the  j-order wave-number, 1, 2,3j =  

( , ), ( ), ( )sc oc
m m mPζ ω ζ ω ζ ω   –  m- branch lateral complex wave-number, s.c. ( 0P = ) and o.c. ( P = ∞ ) dispersion 
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                                                       eigen-values   

1 , ,el el elR h hσ σ=
�

          –    unit surface resistance of the electrode, its thickness and unit conductance 

, vλ G
  and  0 ,x µ                  –    wave-length, velocity and characteristic decay parameters   

( ) ( )( ), , ( )r a r aZ Z R Rφ
� �

     –  PR impedance, its phase, resonance/antiresonance resistances (unit surface values) 

X , X , X                     –  notations for a complex X matrix, its determinant and determinant’s absolute value  

, ,X , X (X ) , Xx x x′ ′ ∂ ∂          –  notations for a first-order x-derivative of some X function 

( ), ( )F Uξ ξ                         –  generalized s.c. and o.c. characteristic matrix’s functions of the lateral wave-number  
, ,,sc oc sc oc

i iθ∆                        –   coefficients in first-order derivative representation of the characteristic matrices  

,i j i jp a                                  –   elements of generalized 0F  and 0U  matrix’s functions for S- and A-configurations  
2 2

0 elP b C Rω ωτ= =
� �

,  2
0 0P ω τ= ,  2

0elb R Cτ =
��

  –   relaxation parameters of electrode resistivity influence 

,α β                                      –   relaxation parameters of the Havriliak-Negami equation  

i 1= −                                  –   imaginary unit   
,i j                                         –   integer numbers (as subscripts)  

S-TL:n  ,  S-TSh:n             –   n-order basic TL (odd TLn ) and non-basic TSh (even TShn ) resonances in  S-configuration   

A-TSh:n ,   A-TL:n            –  n-order basic TSh (odd TShn ) and non-basic TL (even TLn ) resonances in A-configuration   

TLκ  ,  TShκ                            –   effective CEMC for “A-TL: even n”  and  “S-TSh: even n”  resonances, respectively 

...&...   ,  ... ...              –   “ and ” and  “ or ”  signs with respective elements 

Upper point denotes a real value of the complex parameter. 
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