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ABSTRACT - A theoretical description of the dissipative phenomena in the wave dispersion related to the
“energy-trap” effect in a thickness-vibrating infinite thickness-polarized piezoceramic plate with resistive
electrodes is presented. The 3-D equations of linear piezoelectricity with quasi-electrostatic approximation
were extended to include losses attributed to the bulk electro-mechanical damping in solid (complex material
constants) and the resistance in electrodes. These equations were used to obtain symmetric and antisymmetric
solutions of plane harmonic waves of arbitrary direction and to investigate the eigen-modes of thickness
longitudinal (7L) up to 3" harmonic and shear (7S%) up to 9" harmonic vibrations of odd- and even-orders.
The effects of internal and electrode energy dissipation parameters on the wave propagation under regimes
ranging from a short-circuit (s.c.) condition through the resonance of the RC-type relaxation dispersion to an

open-circuit (0.c.) condition are examined in detail for PZT piezoceramics with three characteristic 7L-mode
energy-trap figure-of-merit éﬁ/éﬁ values - less, near equal and higher 4 — when the second harmonic

spurious 7S% resonance lies below the fundamental T resonance, inside its resonance-antiresonance
frequency interval, and above the 7L antiresonance, respectively. Calculated lateral wave-number dispersion
dependences on frequency and electrode resistance are found to follow the universal scaling formula similar
to those for dielectrics characterization. Formally represented as a Cole-Cole diagram of the complex lateral
wave-number, the dispersion branches basically exhibit Debye-like and modified Devidson-Cole
dependences. Varying the dissipation parameters of internal loss and electrode conductivity, the interaction of
different branches was demonstrated by analytical and numerical analysis.

For the purposes of dispersion characterization of at least any thickness resonance near the wave-number
origin, the following Theorem was stated: the ratio of two characteristic determinants, specifically constructed
from the boundary conditions to describe the eigenmodes of the o.c. and s.c. piezoelectric plate, in the limit of
zero lateral wave-number, is equal to the basic elementary-mode normalized admittance. As was found based
on the Theorem, the complex lateral wave-numbers near the basic and non-basic 7L and TSk resonances
reveal some simple representations related to the respective elementary admittance and showing the

connection between the propagation and excitation problems in a continuous piezoactive medium.
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I. INTRODUCTION

Piezoplates made of piezoelectric ceramics [1],[2] with 6-mm symmetry are widely used as high-
frequency resonators, transducers, and monolithic filters employing thickness vibrational modes [3],[4].
In an elementary theory neglecting transverse effects and other spurious modes influence, in a relatively thin
piezoceramic plate W x Y x 2b (Fig. 1a,b) with thickness polarization (I5 ) and electrodes respectively on

WY xY and W x2b plate surfaces, two basic thickness elementary 7L- and 7.Sh-modes can be excited [1],[5]
by the uniform in the major plane electric field E*, with respective piezoresonator’s (PR) impedances Z:

Z ioCy =1-ki tanK /K, , (1)

. -1 ~y =
(Z-i0Cy) =1-ki + ki tanK g K @)
where Cy, = &5 ¥ Y/2b and C}; = &}, 26/ Y are the PR capacitance, k? = e2 /c2 &5, and
I~<125 =el / ch, &, are the TL- and TSh-mode coefficients of electro-mechanical coupling (CEMC) squared,

K2

Ty = @ pb? [cg and Kfg, = @ pb® [ ¢y, are the TL and TSh elementary mode wave-numbers squared,

<TSh>
2b is the PR thickness, p is the piezomaterial density, @ =27z f is the frequency, i=~/~1. The standard [6]
d),

notations and the SI system of units are used for the material constants: piezocoefficients e, (A i

dielectric permittivity &;;* at constant stress T and strain S, elastic stiffness ¢;;” (compliance s;”) at
constant strength E and induction D of an electric field. To take into account internal losses, the material

coefficients are phenomenologically expressed as complex [7] with respective imaginary parts responsible

for mechanical, dielectric, and piezoelectric energy dissipation.
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Fig. 1 a,b . Thickness-polarized PR plates with
TL (a) and TSh (b) elementary vibrations.
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The PR admittance is actually related to the extended concept of dielectric permittivity as a charge
(induction)-to-voltage ratio. Then, the relationships (1),(2) can be expressed in a generalized form as an

effective dielectric permittivity of a PR

& Y=Rwz with Y=Y, =i(1FK@nK/K)" @3)

(TL|TSh)

where Y<TL‘TSh

dimension factor, then for the elementary 7.-mode (Fig. 1a): K = K<TL>, kK®=Kk>, R=2b/¥Y , &’ =¢&j,;

\ is the dimensionless normalized admittance of the respective elementary mode, R is the PR

for the elementary 7Sh-mode (Fig. 1b): K =K ., , k* =k = l~<125/(1— Rfs), R=Y/2bY , &’ =¢&).

The typical frequency responses of a PR have both the resonance f. and antiresonance f, frequencies [6],[8]
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determined by the real elastic stiffness c"fj*D ; only odd-order harmonics (7 =1,3,5...) of the basic resonances
can be excited in the elementary PRs. The resonance and antiresonance peaks sharpness is determined

basically by the complex elastic stiffness ¢ = ¢/” (1+ i/ O;") with respective quality factors O,"” [9]

whose difference can reach as much as 3 times due to high piezoeffect in piezoceramics.

In general, thickness vibrations of a real PR are very complicated due to the influence of competing
modes and the effects that are caused by planar boundary conditions. Coupling of different modes typically
occurs in the vicinity of the lowest fundamental thickness resonances [4],[7],[10]-[16], so that the basic TL-
mode with a coupled TSk vibration, or the basic 7.Sk-mode with coupled flexure-twist vibrations, can provide

under certain conditions the “energy-trapping” effect widely used in frequency selection devices. The PZT-
piezoceramics is characterized by the wide range of the figure-of-merit c';;/c'ﬁ from approximately 2.3 for

far-tetragonal compositions up to 9 for soft piezoceramics near morphotropic phase boundary [1,2].

The 3-D equations of linear piezoelectricity, including mechanical damping and electric conductivity, were
used in [13] to obtain solutions of plane bulk harmonic Lamb waves [1],[14] in an infinite piezoelectric plate
with general symmetry. Four lowest dispersion curves were computed and plotted for real frequencies and
complex lateral wave numbers &(w) in a wide frequency range near the fundamental resonances.

All branches are complex due to dissipation, and there are no longer any cut-off frequencies as those existing
for the non-dissipative waves where a significant characteristic change of dispersion curves occurs. The
relatively newly discovered edge mode, which is a combined motion of the even-order 7.5k and odd-order 7L
vibrations, was explained theoretically [10] from a branch with complex wave-number. The fields distribution
in a vibrating body can be calculated based on finite element method — boundary element method, however
the connection of such a calculation with the dispersion relations is not obvious.

Useful dispersion properties can be extracted from a simple fact — by supposing the only condition that
determinants of the characteristic matrices are even functions of both 52 and @” [4]. When the determinant
equals zero, there is a root for dispersion relationship in the primary form g”fz (®?), then as a first-order
approximation ¢ oc @” — @, in a vicinity of the complex resonance with @, = &; (1+i/Q), where @; is
proportional to the lossy elastic stiffness ¢, (1+ i/Q) with the quality factor Q. It follows that at the
resonance there is an absolute minimum ¢ (a) = a)o) oc i a)g/Q with the complex wave-number
min £, (0= wy) = (+1- I)n/\/é inversely proportional to /O [15]. In piezoelectrics the difference
(shift) between s.c. and o.c. branches near the resonance appears to be proportional to CEMC squared.

Ingebrigtsen’s approach [17],[18], primarily developed for the 1-D electrical behavior description of the

surface acoustic waves in an interdigital piezo-transducer array, is based on the effective dielectric

permittivity £*(&) concept. As &°(&) as a parameter of the surface potential distribution is an even function

of the wave-number &, its frequency dependence between the s.c. resonance pole (& = ¢, ) and o.c. zero



antiresonance (& = ¢, ) provides a convenient approximate form

8*(§)z1~_§2—§f 4)
& éz_é’rz '

where I is a constant. Such approach, applied particularly to the 1-D elementary admittance (3) with the

thickness wave-number K, is the basis for a simplified traditional equivalent circuit of a PR [1].

Further development of the concept was conducted in [19] for the harmonic admittance. As was formulated

as a general theorem, if the appropriately defined dispersion equation for open electrodes is ||G(§, a))|| =0 to

describe the eigenmodes & = ¢°“(w) , and for short-circuited electrodes is ||(I>(§, a))” =0 with £ =" (o)

of an infinite 1-D periodic surface electrode array, then the harmonic admittance of the piezoelectric structure
may be always expressed as the ratio of two determinants
Z7(¢,0)=||G(¢, 0)| /@& o) . (5)

The calculation of the harmonic admittance and finding the dispersion equations for the eigenmodes of the
infinite periodic electrode array are usually considered as two independent concepts - the excitation problem
and the propagation problem. It was shown that these two problems [19] are in reality very closely connected.

The thinner piezoplate thickness used in practice, the thinner electrode thickness is required and limited
methods can be applied for electrode deposition. The electrode resistivity effect can not be properly described
by discrete equivalent circuit elements with an additional resistance (R,, ), as such the PR is a system with
distributed parameters involving local acoustic and electric interactions. The effect of resistive electrodes
and/or bulk conductivity on elastic waves in piezoelectrics relates to a common phenomenon of dielectric
dispersion [18],[21]-[23]. Most of relaxation processes in dielectrics — frequency behavior of the effective
complex dielectric constant £"(w) =Re&” —ilme™ — are generally described by the Havriliak-Negami

empirical expression [22]-[24] with two exponential parameters

{;'0 B goo
PP ©)
[1+(|a)z') ]

where ¢ is the high frequency permittivity, &, is the static, low frequency permittivity, and 7 = RC is the

(w)=¢,+

characteristic relaxation time of the medium with effective resistive R and capacitive C components.

The exponents & and S describe the asymmetry and broadness of the corresponding dielectric dispersion
curve, and depend mainly on the structure configuration (anisotropy degree). For =1, O0<a <1 itis
known as the Cole-Cole; for 0 < <1, & =1 as the Davidson-Cole equation. The Debye expression with

f =a =1 corresponds to a single isotropic relaxation mechanism describing the “loss tangent” in a dielectric
medium, with a maximum in Imeg” at the dielectric resonance w7 =1. Traditionally plotted real and

imaginary parts of the dielectric constant as a function of frequency is called a Cole-Cole diagram — an ideal

semicircle arc for Debye dispersion, and linear at high frequencies and with arc-like shape at low frequencies



for Davidson-Cole dispersion.

As was shown from the dispersion equations for acoustic waves in conductive solid medium, such as
piezoelectric semiconductors [25], the character of interaction of the elastic waves with free bulk charges
(unit conductivity o) is largely determined by the effective complex dielectric permittivity

8*(T)=€T+_£=8T( |07 J : (7)

iw l+iwr

Free chargers are fully screening the electric fields in the wave at relatively low frequencies where wave

velocity is determined by the elastic constant s” under constant electric field E, the influence of free charges

at relatively high frequencies are negligible and wave velocity is determined by the elastic constant

sP=s" (1— k2) under constant electric induction D. Clearly, the effective elastic compliance s*(z) behaves

itself in the same way forming the lateral phase velocity dispersion under bulk conductivity:

s*(r):sE(l—kzia)—T]:sD(h— K’ L J : 8)

l+iwr 1—k2.1+ia)r

where 7 = ET/O' is the Maxwell charge relaxation time, k® is the respective material CEMC squared.

The dispersion dependences can be interpreted in the term of conductivity at a constant given frequency as
7 is mainly dependable on conductivity. In the literature, the interaction of acoustic waves in piezoelectrics
with conductivity of free charges was described for various structures: bulk waves and conductivity in piezo-
electric semiconductors; surface waves in a piezoelectric substrate with electrodes - fully covered or
interdigital, metal or semi-conductive, located directly on the surface, or with a gap [20], as conductive fluid
[21]. Because of high electromechanical coupling, the interaction of the bulk acoustic waves with the
electrode system is relatively strong, and a velocity change as large as 50% can be achieved by altering the
surface conductivity. The results obtained reveal great prospects of using such properties to create acousto-
electronic devices with controllable characteristics. A simple fixture principle, related to the problem, with
two contact points on the resistive electrode was proposed [15] providing deep sharpening and exact deter-
mination of the PR resonances. The present original theoretical research is studying the influence of electrode

resistivity on the dispersion of bulk plane acoustic waves near the thickness resonances of a lossy piezoplate.

I1. GOVERNING EQUATIONS for PLANE WAVES in a PIEZOCERAMIC PLATE

The plane waves in the x —z plane of an infinite in both x-y directions and thickness-polarized plate
(Fig. 2 a,b) are considered for certainty, so that no gradients exist in the y - direction. The relevant linear
equations of piezoelectricity are as follows:

_E
To=cyu

X

_E
T;cz_644'(ux,z+uz,x)+815.¢,x ’
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D :e3l'ux,x+e33.uz,z_833.¢,z ' Dx2815.<ux,z+uz,x)_gll.¢,x ’ (9)
where T is the stress, E and D are the electric field strength and induction, ¢ is the electric potential with

Ey==0.c- u is the mechanical displacement [13]. The equations of motion and charge are:

X

puz,tt:]—;,z+T pux,tt:T;c,x—I—T Dx,x+Dz,z:0 . (10)

xz,x ! xz,z !

All material constants are supposed to be complex, responsible for respective internal losses [7], time

+iot

dependence is taken as e . The common solution for plane waves can be expressed as exponential

functions of z and x coordinates with respective thickness K_ and lateral & wave-numbers:
. u o) (x,2)=4,, ,-exp(iot-iK, -z-i& -x), (11)
or in a normalized (to half-thickness b) form:
lu,,u,,p) =Z{WP}-exp(ia)t—iK-z—ig-f), (12)
where (i, i, @} ={u, ,u, 0} /b, A, ,=4.. /b {K.E}={K. E}b, {xZ)={xz}/b.
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Fig. 2 a,b,c. An infinite thickness-polarized
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As schematically shown in Fig. 2c for a simple single vibrational mode, the complex lateral wave-number
& describes the plane wave with phase velocity V and wave-length A, exponentially decaying with a
characteristic distance x,. The phase propagation direction depends on the Re £ sign and, in general, is not

indicative of the wave direction of energy transfer defined by the group velocity dw/0& [14]. Clearly, energy
conservation requires that the real part of —i&Xx be negative, so that negative Im & <0 provides physically
correct attenuation with zero wave amplitude in the infinity for x — +co0. Two types of independent
orthogonal solutions exist, traditionally called “symmetric” (S-configuration) and “antisymmetric”
(A-configuration) ones, following to the symmetry of the mechanical displacements () in respect to the

middle plane of a plate. Generally both these cases correspond to the elementary 7Z- and T:Sh-vibrations

(Fig. 1) excited by the respective longitudinal (thickness-excited) [1] and transverse [5] electric fields E*.

It is assumed further that the electrode mass does not cause any mechanical perturbations [13].



A. Equations of Motion and Charge

Substituting the equations of piezoelectricity (9) into the motion and charge equations (10), in a matrix form

_ZX Ké(cﬁ +ClE3) (a) pb* & c44) 031‘53 K2e33+§2e15
|B|~ IEZ =0, |B|—(a) pb* —& ‘711) K?cl, —Kf(c44+cl3) —K&(ey+eg) - (13)
4, —K& (e +e;5) _(K2633+§2315) K’ej +&%e)

The determinant ||B| =0 must vanish for non-trivial solutions, which provides a bi-cubic characteristic equation
2\3 2\? E 2 12 * 2 32 2 i E 1e. V¥ £\?
R R e Y e L R e e A1
g g Cu\ ey § cp\ ¢ & €33 C33 Caa €33Cu Cs3 Cua

2 2 42 2 72 e.+e. ) 2 42 2 E\?
{5 (o) ) 0 ol [0l sl 112 o 2 1 B o (10 B |
g Cag Ca\ 1 & ¢ é 033 €33 611 Cy Cu$ C33 533 Cay €11 Cy Cay Cuy

FEFNErN "
s D E E g2 D g2
£33 Co3 Cyu\ Oy & Cu &

where ¢, =%, (1— kf) el =ch (1 k? ) cﬁ/(1+ kfs) and ¢ =ck +ch el a5, +2e,e, /e,
This 3-D problem is reduced to a 2-D one with coupled thickness and lateral wave-numbers common for both

S- and A- configurations - there are three roots K, (&*, @”) with respective sets Z{ | where j=1,2,3

x,z,05(j)!
is the order of the roots (Appendix 11-2). Solving (13) we particularly have for the amplitudes

:(K/g)-/]{z,@} -A.,  where

A =£H* {(.«33l +615)(€33K2 +e15§2)+ (cf4 + cﬁ)(g;Kz +e &l )} , (15)
4,=¢& -H‘l{(e3l +e15)(a)2pb2 —cr - K*—cl, -§Z)+(cf4 +c£)(e33K2 +815§2)} : (16)
H = (cf3K2 +ehE? - a)z,obz)(a‘:fglf2 + gﬂ§2)+ (e33K2 + elscfz)z (17)
For further eigen-values consideration it is supposed A =1 in (15)-(17), so that A =(K/§)

B. Boundary Conditions for Short-Circuit and Open-Circuit Regimes

The boundary conditions on major surfaces for mechanical stress are

=0, T,

z=+1 xz

T,

z

=0, (18)
and classical limit s.c. (ideal short-circuited electrodes) and o.c. (electrodeless plate with the electric potential

floating freely and the current vanishing) electrical boundary conditions are

p.,=0 (sc), D

=0 (oc). (19)

Zlz=41

The solutions for the S-configuration (basic TL-mode) are expressed in the form

. _ 3 — _ _ _ 3 - - —
= —S|n(§x)~szj Ay cos(K,-Z) = cos(§x)-Zij A,y -sin(K, 7).,



— — 3 — . _
§=C0S(EX)- D L, A, sin(K,)Z) , (20)
and the solutions for the A-configuration (basic 7.Sh-mode) are
— — 3 - . _ _ . _ 3 — —
i, = Cos(£X) - szj A,y sin(K ,,-Z) . i=-sin(¢X)- szj A, -cos(K 7).

p= —sin(éf)-ZjL‘j A, -cos(K ;) Z) (21)

()
amplitudes in each characteristic (20),(21). For the S- or A- (S|A) cases, with respectively the s.c. and o.c.

The dimensionless L ; weighting coefficients mean equal relative shares of partial solutions with A{Z }

conditions on the electrodes

¢ Ll Dz Ll
T.| =0, then [®(SJA)-|L,|=0, and |T.| =0, then |G(SIA):|L,|=0 . (22)
Trz — LS 2L | — L3

To satisfy the above conditions and extract the primary non-trivial solutions &% = (¢ ,f,c’ “V(®),
the respective determinants of the boundary-conditions characteristic matrices must vanish
|@(sIA)|=0 (sc) and |G (slA)|=0 (o). (23)

Conducting elementary transformations for the determinants, we have:
E E E E
o (sia)] - M (SIA)]- 22 e ana [ sia|= V()| S L (e
En & b g b
where for the S|A - configurations:

M(S|A) =:g—53-1<

1j € )

A, - (sinfcos)(K ) .

~ S ~
N<S|A> = [ﬁfz ~K() A +%'K<2n A, ;) ]<C°S|Sin>(K(j)) ’

1j
€33 33

E
M<S|A>2j - N<S|A>2j - [%{52 —K(y A ‘e_}:'K(zﬂ Ay ](cos|sin>(1<(j)) ’

M(S|A) =N<S|A>3j :{1—22(,)—%';1“” }~K(j)~<sin|cos>(K(j)) : (26)

3 Cuy
The determinants of the matrices ‘M <S|A>‘ and ‘N<S|A>‘ have the same dimension, and their corresponding

pairs, |[MS| and [NS||, [[MA]|- £ and |[NA|-£7, are finite at & — 0. Solving (14),(23) is a problem about
eigen-values, or eigen-states, which provides the relationship between frequency @ and lateral wave-number

¢ known as a dispersion relation. Final original solutions are symmetric in respect to the lateral wave-
number and are expressed in a mathematically correct form ¢ (°) , while for its application in the wave

propagation physical analysis it needs to be transformed into ¢, (@) with the physical limitations mentioned.

Note, as a further stage of analysis, for a real finite PR plate with a lateral boundary, its coupled frequency
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spectrum can be found in a similar procedure with equal weighting shares of all partial solutions related to the

roots &, inthe m-summation for planar directions [26].

NS

&

Fig. 3. Typical surfaces of the S-configuration dispersion matrices

(module of the complex determinants (24),(25)) in the 52 -plane for
‘cf 2‘ <1 near the fundamental TL antiresonance with y,,, =-0.03

IMS

-0.5 4 )
Im & 05 Rel

C. Characteristic Matrices at the Dispersion Origin - The Theorem

(&% (70). PzT-54, 0 =100.

Obviously, the characteristic dispersion matrices at the origin (£ = 0) refer to an elementary 1-D case.

The existence of such a presentation is formulated as a general Theorem, which is stated as follows:

Theorem. The ratio of two matrix determinants constructed from the boundary condition equations for

a finite piezoelectric plate with the open-circuited and short-circuited major surfaces, with respectively

‘G <S|A>‘ and ‘(I)<S|A>‘ characteristic matrices in the symmetric S-configuration (antisymmetric
A-configuration), in the limit of zero lateral wave-number & — 0 is equal to the normalized complex

admittance Y of the basic elementary mode, particularly:

for the S-configuration with the basic S-7Z mode

tan(a)b p/ch ) ~
[_%MHJ = 1K =iy, 27)
) o), b ol
for the A-configuration with the basic A-7.Sh mode
tan(a)b p/cE) ~
[_%j[gsz = l+k125 g —i- (Tsm) - (28)
‘1 |®@A] 0 wbyp/c,

The proof of the Theorem is presented in Appendix I. Typical surfaces of the o.c. and s.c. dispersion

matrices in the £*-plane are shown in Fig. 3, and generally they represent right cones (linear) near the origin

at ‘52‘ <1. Basics for the Theorem are clear from the initial equations (9)-(11), where for & — 0 the only

elementary TZL-mode parameters (c:f3 , €33, g:fs) are remaining (& is a factor with all other material

constants). In the contrary, the initial equations, being multiple or divided by & (or by 52 totally for the

matrix ratio (28)), have the only elementary 7:Sk-mode parameters dominant and remaining at £ — 0.
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D. Piezoceramic Plate with Electrodes of Finite Conductivity

D1. Electrical Boundary Condition for a Dielectric Plate with Resistive Electrodes

The basic equation describing the electrical potential distribution ¢(x) along the resistive non-inertial
electrodes with the unit conductivity o and thickness 4, can be established from the continuity of currents
along the electrode (Fig. 4) - for an elementary electrode cell with length dx (unit width) the difference of

the currents on its left 7, and right /, sides equals the current 7, caused by the surface normal electrical

inductance D,

., - On the boundary “dielectric — resistive electrode”, there are equal tangent components of

the electric field and equal normal components of the electrical induction (density of free charges g ) [23].
Note the positive z-direction is opposed to the circuitry loop direction in the plate, as shown in Fig. 4. Inside

the upper electrode (z =1) for the established space-coordinates, 7, — 1, = I; with E_=—¢ _, then:
L-1,=ch,(E,—E,)=ch, ¢, dx, I,=q,,=-D.,-dx=—ioD, dx , (29)
¢+,xx+ia)Rel'Dz:0 ! (30)

where Rg, =1/oh,, is the unit surface running electrode resistance. As a general equation for both electrodes

e —loR,-D.|_ (31)
with ¢ = —g0|2:7 , and D, _ ,=D.,|._, forsymmetric S-configuration,
and ¢ =¢|._ and D.|_  =-D.|___, forantisymmetric A-configuration.
% @ x) 42 h,
= I, \l( 7, | Fig. 4. Schematic of the electric field configuration in
B | z _
,\)-s- - _ | electyodes 5 T_JE a dielectric plate (bulk field E_) with thin layer
- dx
: Is\l, q- | electrodes (surface field Ex ).
R R D) -b dg:ﬁiti;e
T ¢?_(_x) "%]2 of the loop

D2. “Discrete” R-C (R-Z) Model - Introductory Parameters

The following introductory consideration covers the discrete R-C and R-Z simple models (like a classical
3-1 piezocomposite), with respectively capacitive admittance and uncoupled elementary bulk impedance of
the TL vibrations in the S-configuration, to explain further the results of general analysis. It is the case when

the admittance of a plate segment at any frequency is strictly proportional to its square, so no lateral electric
field components occur inside the plate body [28]. As 1, =iw @, - 2Cdx and 1,=2¢, -Z7Ydx , respectively,

where C (50 = g;;/Zb) and Z' = wéo\?<TL> are the unit surface running dielectric capacitance and 7-
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mode elementary admittance (1), then according to (30) for ¢ = ¢, /b =@

z=%1 :
P +u’-p=0  with (32)
u? =-i2b’wCR, and  p*=-b*2R,/Z (33)
respectively for a capacitive dielectric body and for a generalized “uncoupled” case — all as discrete elements.
The common solution for the surface potential is a set of exponential functions @(x)= Bexp(—ig-x) with

two symmetric roots +4, where B is a coefficient.

For a capacitive case 4° =-2i P?, then in the units of P =b\/&@CR, >0 there are roots +(1—i)P.

For an infinite plate with x >0 and x <0 , and for a finite plate with a planar boundary, they are both in
force. For an infinite plate with x > 0 (for simplicity and certainty), the only physically correct solution

provides fully decaying wave in the infinity with Im 2z <0:

1=+(1-1)b\JoCR, = Jo]a, -P,-i\Jo]a, - B,=P-iP (34)
where B’ = b’w,CR,, ~ (@, b)-(&5,/7) , w, is some reference frequency (resonance). Only dispersion
roots under such conditions will be further considered. Such electric field distribution corresponds to a case
of phase-shift potential rotation along the electrode surface as a wave with the wave-number 1/2b=7z/P,
decay distance x,/2b=0.5/P and phase velocity V=+wb/P (Fig. 2c).

Analogously for the “uncoupled” TL elementary mode case, in a set of two roots z=Re g+ilmu=

= +,/-b 21{,1/2 , the only one is taken into account with negative Im . <0. As the elementary PR

- - i . -1 .
admittance can be representedas Z ' =ReZ ' +ilmZ ™" = ‘Z‘ e’ where ¢ e (—7/2,+7/2) isits phase,

then
p=-"" b2k, |7 . (35)

The PR impedance near the resonance has capacitive, inductive, or active character. At the 7L resonance (7)

or antiresonance (a) frequencies, when the elementary PR impedance is active Z = R the distribution

r(a)’
parameter u =—ib, /211, / Rr(a) is pure imaginary. The inductive character of 7 provides the root

uoc (=1—1) with Im <0 and hence Re 1 <0 (opposite phase velocity to the capacitive case). From the
three characteristic cases, it follows that for x > 0 the wave is always decaying, it travels in positive x-
direction outside the PR resonance-antiresonance frequency interval (capacitive case with Re > 0), and in
opposite negative x-direction inside the resonance-antiresonance frequency interval (inductive case with
Re 12 < 0). Such a transition is continuous on frequency, so that the case with Re z =0 corresponds to the

resonance or antiresonance frequency (decaying distribution without space oscillations).
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D3. Dielectric (Non-Piezoelectric) “Continuous” Plate with Resistive Electrodes

For a pure electrical case with zero piezoeffect in a dielectric plate, the actual thickness and lateral electric

field distribution can be described with a similar eigen-value approach (9)-(11),(20),(21),(31) providing the

relationship for the thickness and lateral wave-numbers K* +v &* =0 from the charge equation, where
V=g, / &5, Is the parameter of dielectric anisotropy. Finally there are two orthogonal equations for the

S- and A-configurations, respectively
tan(igdv)=2Pv  and g-cot(igﬁ):—zpzﬁ (36)
with P? =b*wC,R,, € (0,0) . There are two infinite sets of solutions & = ¢, with respectively {odd m® }

branches in S-configuration, and {even m® } branches in A-configuration, m =1,2,3,4... (Figs. 5,6).

For the lowest 1® branch at P << 1, thereis g{@} =~ (1— i)P coinciding with those of the discrete model.

For the branch at P — oo, the lateral field distribution is as ~ exp(—0.57w?) with a characteristic decay

distance X, =1 related to the edge-effect of field distribution from a dot surface charge.

D4. Piezoceramic Plate with Resistive Electrodes — Dispersion Equation

In the case of resistive electrodes, each elementary unit plate volume is acoustically coupled with and
electrically loaded by surrounding regions. From (12),(31) it follows a general electrical boundary condition
for both S- and A-configurations corresponding to resistive electrodes and taking an intermediate disposition

between classical o.c. and s.c. regimes:
‘/582 : (i¢7|3:+1) - ia)jéelbz ’ EE
Then, together with the mechanical boundary conditions (22), the dispersion equation is:

£ -|@(SIA)|-ib*eR, - |G (SIA)|=0, or (38)

=0. (37)

z=%1

&M (sia)] -2i P N(sia)] = 39)
for corresponding S- (basic TZ-mode) and A- (basic 7.Sk-mode) configurations, where Re] = 1/ h,o,
C,=£5/2b, P =b’wC,R, = w1, v=b"R,C, is the dielectric relaxation time. The matrix determinants
(39) provide roots £ = ¢ (P) with their limit values for each branch ¢, (P — 0) = ¢ of s.c. and

g, (P—w)=¢"" of o.c. classical conditions.

According to the Theorem, for sufficiently small ‘52‘ << 1, we have (38) a root for the S-configuration:

i, =ivor, 163

fro} el ||(I)S| - _bZWRel .(853/b)?<TL> =-b’ ZReI/Z =u, (40)

£250
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so that it coincides with (33) for an “uncoupled discrete case”, is linear proportional to I?el and elementary 7L
admittance Z*, so that the origin & =0 is a dispersion solution at 11, — 0 (ideal electrode) and forms a

dispersion branch £, = 0. For the A~configuration ib’wR, ~(§’2 ||GA||/||(I)A||) =1, so that there is no
solution at the origin £=0 at R, — 0.

According to (37), the surface free charges density occurs on the electrode accompanying the wave

propagation g =-D., e = i(q;-éo)((m /P)2 , Where (gofo) is the pure capacitive charge. Note that

at P — 0 the space-periodic potential amplitude ¢ — 0 on the getting equipotential electrode surface.

I1l. RESULTS of DISPERSION ANALYSIS and DISCUSSION

The effects of internal dissipation and electrode resistivity in the range from the ideal electrodes (s.c.)
condition through the RC-type relaxation resonance up to fully electrodeless (o.c.) condition on the wave

propagation are examined in detail for PZT ceramics with three characteristic values of the TZL-mode energy-
trap figure-of-merit ¢2 /¢2, (ci/cﬁ) =3.0(2.4), 4.4(3.5), 7.0(5.4) - less, near equal and higher 4 — when the

second harmonic spurious 7Sk resonance in the S-configuration lies respectively below the fundamental 7L

resonance, inside its resonance-antiresonance frequency interval, and above the 7L antiresonance. The results

of calculations of the lateral dimensionless wave-number &, (@, P) dispersion branches up to as much as
27 in magnitude in their combined frequency and dissipation dependences for three corresponding

piezoceramics are presented in files: ML<S|A> Cﬁgs PbTiO;, m2 <s|A> Csﬁgr%ﬂig

PZT-35, m3<s|A> ar PZT-5A [1],[2], respectively for S- and A-configurations. A low-frequency

cumulative fragment for PZT-5A is presented in Fig. 5 a,b. In the conducted analysis the only cﬁ elastic
constants with their quality factors QO = Qf].'D were used as complex, while the other parameters involved in
(9),(14) were taken as real, nevertheless providing the dielectric sfl. and piezoelectric d, ; constants complex
as well as in the traditional approach [7]. The following frequency parameters o’ pb* = (1+ ;()2 (7[/2)2 ¢
of the resonance frequency displacement y = @/, —1 were used, where @, = (ﬂ/Zb)m with

;= Cop s X = Xy fors-(1),and ¢;; = Cor X = Xaswz) for A- (2) configurations, corresponding to the
major soft (7:S%) and hard (7L) vibrational mode types [6],[8]. The “resonance” and “antiresonance” terms

primarily refer here to the elementary normalized admittance Y,

(7L, T5H) for certainty, accompanying with

¢.*° — 0 of a corresponding branch as shown.

There are planar (ﬁ ), odd-order TL (mE’) and even-order TSh (m]::*) mode branches for S-, and flexure
(15 ), odd-order T'Sh (mE ) and even-order TL (mE ~) mode branches for A-configurations, and respective

potential branches (m® ). As the planar phase velocity of a wave is V = b w/Re( , then Red >0 corres-


Administrator
Note
Multimedia file 
"M1-S__Multi-PbTiO3.gif"
attached


Administrator
Note
Multimedia file 
"M1-A__Multi-PbTiO3.gif"
attached


Administrator
Note
Multimedia file 
"M2-S__Multi-PZT-35.gif"
attached


Administrator
Note
Multimedia file 
"M2-A__Multi-PZT-35.gif"
attached


Administrator
Note
Multimedia file 
"M2-S__Multi-PZT-5A.gif"
attached


Administrator
Note
Multimedia file 
"M2-A__Multi-PZT-5A.gif"
attached



14
ponds to forward-wave modes, traveling in positive direction, and Re ¢ < 0 refers to backward-wave modes.

Frequency line with TL and TSh resonances, and current frequency position (1)

Fig. 5 a,b . Cumulative dispersion branches {>(P) (a) and £, (P) (b) for both S- and A-configurations
of a lossy PR plate with resistive electrodes (39) at a frequency near the fundamental “A-TSh:1” resonance
(PZT-5A). Inserted (a) shows a transformation from complex fz - to & -plane with major axes. The branches

with notation in a frame relate to the A-configuration, without a frame — to the S-configuration. The “tn;”

and “sn. " branches are related to and form the respective n-order TL and TSh resonances. The |§| <1

circle (b) is the scope of the Statement (Chapter 111-B).

The 52 -plane representation of dispersion is more important for the mathematical analysis as a primary
parameter of characteristic functions of certain symmetry, while the & -plane representation is more

informative for practical applications in the wave propagation analysis. For the last one, mathematically, two

solutions are close to each other with maximum interaction, when either they are close in the & -plane, or
when they are both pure real (Fig. 5a, inserted). Particularly as seen from the MULTIMEDIA files, the edge

mode [10] is a result of the 1E~ TL and 1E* TSh branches interaction. Note that according to conform

reflections, a “half circle-to-circle” transformation takes place for a square function, so it seems there is no
restriction on the §2 sign. Major branches exhibit a clock-wise “rotation” with the resistance parameter P
increasing. Comparing the presented branches classification with those in the classical Lamb wave description
[14] for the modes propagating in the plate with predominantly real (lossless) wave-numbers, each branch
mE* corresponds to a certain Lamb mode for the frequencies higher the corresponding thickness resonance,
with the following relationships of notations: R — S, Lamb mode, 1E* — Sy - fors-, and F—>A,

Lamb mode, 0E* — A, 2E* > A ... for A-configuration, depending on the ég’;/c'ﬁ parameter

<23,4>

mostly for higher-order modes.
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A. General Properties of Dispersion Surfaces

The initial position of the dispersion characteristics can be considered as corresponding to @ — 0 for the

limit s.c. and o.c. regimes and is close to presented in Fig. 5. According to the motion and charge equations

(14), there are three roots (K 2/ 52)

independent of &2 at @ — 0 the first root =—1+(~i/Q) and two

w—0

other complex conjugate roots =—1+1i-0.5. The exact solutions differing in the limits ~ +0.2 depend on
elastic, dielectric, and piezoelectric anisotropy. Then, as can be seen from the boundary conditions, there are

several infinite sets of eigen solutions (branches) {j . One set related to the first root provides the s.c. and o.c.
solutions of “electrical potential” branches {m®} - particularly for the S-configuration O =—i(m-1) /2
when sin K, =0, and ¢, =—imz/2 when respectively cos K ;) =0 in the characteristic matrices

(24)-(26), where m =1,3,5...00 is the branch order. Similar s.c. and o.c. “potential” solutions exist for the
A-configuration with accordingly zero cosine/sine and even branch orders m = 2,4, 6...00. The other two
conjugate roots basically provide two infinite sets of dispersion solutions for the respective 7:S# and TL
complex branches {mE*} with near equal Im ¢, ineach pair at least for @ << @, of any thickness
(TL, TSh) resonance (Fig. 5b), so that:

Coniy = St ~i-Im{* % =-imn/2, (41)

md} = D{(m+1)d} {mE*} =
where m =1,2,3..., with (ﬁj‘g} =0 and
Reg{;;;"}’ :i(ﬂ/4)(1+0.4m). (42)
As the basic frequency factor in (14) is (a)2 ,ob2 / (o cfz) , with frequency increasing, the characteristic
value |§| ~ 0.57[(0)/ a)o) , Where @, is a fundamental thickness resonance, is a measure of consecutive

distortion of the dispersion pattern formed by the 7L and 7Sk branches, when the m = co/coo order {mEi}

branches start moving toward the & -origin to form further the corresponding thickness resonances (see

M1,2,3<S|A> files). Considering the electrode resistivity as a factor of the characteristic relaxation time

r=b’R,C, in P> =wr (39), the real and imaginary parts of £, (P) = Re£, (P)+ilm¢, (P) are found
to follow the universal scaling formula — the Cole-Cole diagram of the lateral complex wave-numbers

remains very close to a semicircle for the {R}, {F’}, and {m®} with m >1 branches.

The relaxation dependences of the planar {R}(P) and flexure {F}(P) branches are found the following:
ve 1 e ot
where A=Re¢’s . —Rel’ . =05k*Res’s

(2.5} (&5} P is the semicircle width, Kk is the corresponding CEMC.

Note that for the branches at P> = @7 ~1, the maximum wave energy loss inside the electrodes takes place.
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Such an effect becomes obvious from the elementary planar mode classical description (as S,, A, Lamb

waves): the dimensionless lateral wave-numbers of a planar mode (¢°¢)* = @’ pb°s” , () = @’ pb°s”,

where s° =55 (1-k?), s¥? =552 (1-i/Q""), k is the planar CEMC (for example, s/”, k., ), then

£ = by psBP (1-i/20%P), ¢ = =" -Kk?/2. For the resistive electrodes according to (8)
%(r) = w’ pb® s* (1) , so that the branch’s semicircle diameter is proportional to the planar CEMC squared,
and is rising with frequency.

The relaxation dependences of the potential branches {m®}(P) obey the following:

. 1 . , [
g{;;zé} (P)= I(Im é/{mzp} m} = Iilm é/{\r:d{} - AIa)—T] ' (44)

where A=Im¢; o —Imgle, =7/2, m=2,3 4..., with maxima of Re{ .. (P) at P~1.
The first-order {1®}(P) potential branch far enough out of any thickness resonance is described by the

modified Davidson-Cole relaxation expression

Img{w}
[1+(0r)*]”
with Im 7o = —7/2 and the exponents =1/2 and & =1 (6), which is linear ¢ o (P <1) = (1~i) P

Cany (P) =] (45)

at relatively low and with arc-like shape at relatively high electrode resistivity. The existence and main
features of the “potential” branches (44),(45) can be explained by the “dielectric” approach (Chapter 11-D3),
which are not largely dependent on piezoeffect.

- ~+ —— dielectric (piezoless) model
wp 11 R é’ (P) (1-i)P & 1Eo = — = relaation madel
w :) \l'l—kf/ — — R-Z madel
s 08 e — actrial
5 1® -~
£ / ap -
g 067
: T
g 04 il ~
=3 PZT-54 b
_ \
Toof Q =900 A
= Xiy=-06

' ; ' ' ' ' ' T LA ' ' ' ' ' ' ;
0 -02 0.4 -0.A -0& -1 -12 -14 EVES 32 34 il 38 -4 42 44 46

Imaginary Wave-Number Tm &

Fig. 6. Lowest characteristic dispersion curves for a piezoplate and its electrical analogs: == actual exact

dispersion (39), — dielectric (piezoless) model (36), - - - relaxation model (43-45) matched on o.c. and s.c.

points, — — R-C model (34). S-configuration for a frequency much less any thickness resonances (PZT-5A4).
The dependence of dispersion relationships on the relaxation time has been analytically and numerically

determined, and the results are compared in Fig. 6 with those for the dielectric, relaxation, and R-C models.

There are two major types of relaxation curves. The electrode resistance dependences of complex ¢, (@7)

for the basic branches (out of their interaction), but 10, largely follow the Debye-like dielectric relaxation
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(typical for a spherically isotropic structure) in terms of frequency and relaxation time. The last one (1&3 )
exhibits an asymmetric distribution of the modified Davidson-Cole functional form. The Cole-Cole
semicircles of a Debye-type relaxation can be satisfactory modeled by an equivalent RC circuit chain with
concentrated parameters [22],[23], where maximum dispersion corresponds to the relaxation dielectric
resonance with RC ~1. When the process is restricted to a constant angle with respect to some fixed axis
(less “degrees of freedom™), approximate Davidson-Cole relaxation is found [23]. Relaxation effects of the
vibration characteristics space distribution described here are part of the general relaxation phenomenon,

supposing that time (transient-effects) and space relaxations are related for a distributed system.

As seen from the M1,2,3 <S| A> files of the dispersion branches in their performance under frequency

variation, when some branch distortion from the ideal form takes place, there is a strong electro-acoustical

interaction with some other nearby branches in a higher degree dependent on dissipation parameters.

B. First-Order Derivative Approximation for the Basic and Non-Basic TL and TSh Resonances
In a generalized consideration, defining the function F(£) as a determinant |[MS| or [MA|- £, then
the function U (&) as [NS| or [NA| (e5,/ &) - £, respectively for S- and A-configurations (Appendix I),

the functions are supposed to be analytical, symmetric of & and finite at & — 0. Then at least for

‘52‘ << 1 they can be represented as:

F(&)=F +F'-&+05F"- (%) +..., (46)
U(E)=U,+U"-E+0.5U"- () +..., (47)
where the independent on & coefficients are
F=Fla, .  F=Fi, =05F_ . F=ri| -@F® :
Uy=Ul., ., U=U, o, 08U, UT=UL|, = (Y12)u®| - (49)

Considering (46),(47) as linear functions of £ (Fig. 3) in a first-order approximation, the dispersion roots

at least near any thickness resonance with ‘(g neoc

m

)2‘ << 1 can be found as follows:

F(&)=0, then () =-F/F,, (50)
U)=0, then (¢2) =-UU, . (51)

According to the Theorem UO/F0 =i-Y, then
(o) (oY 2Y-(-Fuy (52)

If in an ideal fully lossless case the o.c. and s.c. branches intersect the @ -axis with 7" =0 atany 7L and
TSh resonance and antiresonance frequencies, then in a lossy case they do not and reach the & -plane origin as

close as the dissipation factors are low. Generally the graphic surfaces of the absolute functions F(£) and
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U (&) represent a right cone near the origin in the £*- plane (Fig. 3), and for this reason, as a consequence of
a linear dependence, the corresponding roots for the lateral complex wave-numbers are directly related to the

respective elementary normalized admittances \?:\?@”Sh> . The comparative dispersion curves near the
coupled fundamental S-7Z and second-order S-7Sk resonances derived with the first-derivative method and
actual exact solutions are shown in Fig.7, which are in a good agreement. The elementary admittance \?m,rs@

with its the only basic resonances determines the specific features of the dispersion behavior near thickness
resonances of any kind, which consequently are different for the basic TZ and non-basic 754 modes in S-, and

for the basic 7.Sh and non-basic 7L modes in A-configuration.

Real Re& and hmaginary Im & Wave-Number

FET-35 =200

. ' . :
PZESA @ = 200 ) Rel . PbTiOy O =200
s & s rsi2” s STLL & 51502 s % ] "§-TL:1" & "5-TSh:2"
ek 70 3 Dk =44 = ehfel =30
3 :
.......
;;;;;;;; up o
E-e STLd STSh: 2 =
" essnance resonance aiasonance B
a) L - =
g 00 g 0
'\ :‘-‘: 01 b) ;
I|.11 Gn \i % ‘
a.c. é 015 Md;\ ) ._./_.:f’/
B ;L!ﬂho:zr: 3w Methods: £ ‘;;"":/ :Lﬁ?m :
j "J-L;ii-nﬁw"‘ i = 025 . whm“r.l . 1 g === "-Derivative”
, . . : ===: “I-Derivative” . I ) ) ) X .
038 0.2 015 0.1 005 [] 0os -1 -005 [ 005 ol 015 02

I L L L L L -
008 006 -0.04 02 a 002 004

Relative Frequency Displacement Xy
Relative Frequency Displacement Xy

Relative Frequency Displacement Xy

Fig. 7 a,b,c . Comparative o.c. and s.c. dispersion curves near the coupled fundamental “S-TL: n =1"" and
second-order “S-TSh: n=2" resonances for exact solutions (23) and those numerically obtained by the
“first-derivative” method (50),(51) for the three PZT-5A (a), PZT-35 (b), PbTiO; (c) piezoceramics.

The derivative of some 3x3 matrix determinant ||X|| can be expressed as a sum of derivatives of the

partial matrix elements with sin| Cos K,y functions as in (22)-(26):

!

X, Xe Xy, Xy,
it [X|=]X,,]. j=123, then X'=|X[ .=| X, |+|X;, o|+]| Xz (53)
ij X3j ij ij,gz

In the S-configuration the matrix derivatives (50),(51) are ultimately divided by

Uy oc const-CosK ;.\ -sinK ., and in the A-configuration they are divided by

F, oc const -sinK 1y " COS K 75, (Appendix I). Each component of the sum for the matrix derivative contains
a const from the first matrix column, sin| cosK;, functions as a factor from the second matrix column, and

sin| cos K<TSh> functions as a factor from the third matrix column. Grouping the terms, the main body of the

matrix derivative can be finally represented in general as follows, particularly for the S-configuration
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(coefficients with a lower “~ sign):

e —2~_£_F’._% e (i
(é/m) = F, _Uo ( E)j_g ( IY<TL>) ’ (4)
N2 U

oc ~_— = QOC , 55

(gm ) 0 =S (55)
getoe 2 FUEY) L puor podoe B0 K Oy L e BN Ky 1o OO K _

Uy 2 K<TL> K<TSh> 2 K<TL> 2 K(TSh)
tan K cotK
:_EQ;C‘OC +lgic‘oc 1_2@;6“06 ﬂ 1_{_2@;5‘05 ﬂ , (56)
2 4 K<TL> <TSh>

where 0, =A, /A, , 0, =A,/A;, 0, =7, A, /A, G,=A,+0,/2 forthes.c. and o.c. regimes, respectively.
The material dimensionless coefficients A’ °“, i=0,1,2,3, are of the order of 1, their finite algebraic

expressions do not contain trigonometric functions, particularly (Appendix Il ):

AT =9 . AT =8 (1+ 2’(;911) , (57)
D
se _ k2 C3 ) |2 %345 ||~ 2 oc _
Ay =8 —vk + o pb? {~ (kz cLgS j} =G (1 KTL) , AT =8 (58)

.  Co 1 1 ki K,
41 :%Nz'i‘zktz'lgl@) = 1+§kt2‘191(3)+\/;ﬁ ,
33 44

Cay
2
D
e C €426, ~ [ D] E /
41 :%|:N+:;3—1§)i| =1 c33/C44' Vk15kt ' (59)

Cu4 C33€33

E D
C e (e +e ) C
_ 13, %3\t és a3 2 2 2 2
where N = {1+ p T DS }/( E J . K7, =K, V/"gl(Z) T V/‘gl(s) .

C33 C33€33 Cay
Substituting (46),(47) into (39), we have the equation for ¢ (a) P) in its electrode resistivity dependence

as a first-order derivative approximation near the origin ‘52‘ <<1:
© g4 i p2 , 1 - 2 i p2
Q- +[2|P Q= (=Y, ) ]5 ~2ip? =

=(¢) e +[2iP2 (<% ) (S )’ —1]52 ~2i P(iY,,,,) = 0 (60)

There are two roots for {; (a) P) , S0 two different branches exist near the origin forming the resonance.
Analogously for the A-configuration (coefficients with a lower “~* sign):

(cx) =-E =g, (61)
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oc 2 ~ U' U, F oc N/ -1
(é’m ) = U F[_U_Oj = Q : (_IY<TSh>) ) (62)
0
scloc (_F') U' 1 scloc scloc tan K TSh cotK TL 1 scloc tan K TSh 1 scloc cotK TL
9\ — - E_Eéo\ _él\ < () < <>_Eé2\ < { >+§é3‘ < () _

0 (TSh) (TL) (TSh) (TL)
tanK cotK

_ _%Qgcoc +1QIC‘OC 1_2Q;c‘oc (7Sh) 1+ Zggc‘oc (TL) , (63)

4 (TSh) K<TL>

where 8, =A, /A, , 0, =A[A;, 0, =7A /A, 0y =17, +6,/2 forthe s.c. and o.c. regimes, respectively.

The material dimensionless coefficients A’ °“, i=0,1,2,3, are of the order of 1, particularly:

Ay =8 (1_ 27, ) ) AT =Y . (64)
sSc oc CE e e
éz :’91(3) , A, :'91(3) +Vk125 - 0)2:ij E C}jg}i _k125 = '91(3) (1+KTSh) . (65)
A = 033 N2 = 1+\/_ KysK,

Cas vV C33/C44
e Ch €556
A =%|:N 31:)3 1S5:| 2kf5 o) = l+\/633/044 \/_klsk kf5 S - (66)

Cag C33633
Substituting (46),(47) into (39), we have the expression for £ (a) P) in its electrode resistivity dependence

as a first-order derivative approximation near the origin ‘52‘ <<1:

-2

Q* +2ivP? Q% :( 'Y<T5h>) (é“nic)_z+2ivP2(é"Z”)
L+ 2ivP? (¥, ) (-i¥,gy ) +2ivP?

where v = gfl/ggs , With a single branch near the origin forming the resonance..

g, (o,P)=

(67)

The thickness wave-number derivative parameters 91(_ 5 (Appendix Il) involved can be easily found from

(14) by differentiation. They are material dimensionless constants with typical values 4, ., =1+0.3>0

1())
including isotropic non-polarized state of a piezoceramic, do not depend on frequency (harmonic number) —

only on elastic anisotropy and CEMC. As (54)-(67) describe the dispersion near a certain n-order thickness

resonance, the n?-factor appears in A, as an approximation from 2/K? =8/7%n* =1/n® (70) vanishing at

oy L")

n >3 with typical e,, — e, < 5, €. The coefficients A, = fu A~1]-=
‘933 o’ pb’

are determined by the

respective terms related to the lowest potential (Cf)) and planar (ﬁ,ﬁ ) branches roots, so that |A0 (90)| <x1
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are supposed to be not essential near a thickness resonance with <tan| COt>( K) —> 00,
As follows from (56) and (63) of the first-order derivative approach, the two coupled 7L and TSk

vibrational modes are separated as factors in their influence on the resulted lateral wave-number. Then, three

major characteristic cases can be extracted: pure thickness modes, suppressing and gain a mode by another

competing mode, depending on the ‘K<2TSh>/K<2TL> = éﬁ/éﬁ € 2.3...9.0 elastic anisotropy parameter and the

A’ factors. Such a formal description is connected to the physical behavior of the {mE “} branches and

their competitive interaction to form a 7'Sh resonance. General variants of the basic and non-basic resonances

relative disposition, and hence dispersion types for the S|A -configurations, respectively, are:

- (B1) “pure” basic mode odd-order resonance ‘tan K<mm> >>1 with non-basic mode cot K(m\n) ~0;
- (B2) “pure” non-basic mode even-order resonance ‘cot K<mm> >>1 with basic mode tan K<mrs;z> ~0;
- (B3) suppressed non-basic mode resonance ‘CO'[ K<m‘n> >>1 by the coupled basic mode with
1/26, —tan K (rujrsi / K<mm> =0, (68)
and suppressed basic mode resonance |tan K<,ﬂ‘m> >>1 by the coupled non-basic mode with
1/26, +cotK (1) / K (o) = 0, (69)

which are satisfied with respective predominantly real coefficients according to (56) and (63);
- (B4) minimal possible resonance dispersion (gain) due to exactly coincident resonances of the coupled basic
‘tan K

>>1 and non-basic ‘cot K ‘ >>1 thickness modes.

(TL|TSn)

(Tsh|TL)
In the first two cases of “pure” modes, the dispersion of the TL and 7:S% resonances is formed by the

{mE"} and {mE*} branches, respectively. The “suppressed” conditions (68),(69) relate to the competing

{mE*} and {mE~} branches to form a T:Sh resonance, generally with different m-orders, which are
simultaneously trying to reach the & -origin. Between these two conditions the joint 7Z and 7Sh resonance
provides the pure imaginary dispersion with extremely large decay distance. Anyway, any 7L resonance is
always formed by a {mE~} branch.

For further presentation, the elementary mode thickness wave-number is expressed as:

Ky = 0bylpfe =7 (1+Z)(1—'$J=§n+%n(1412—5] (70)
2=f Tt Saw=nélp /4,
where for TL-mode: Q = 0%, ¢ = ci, With ¢ = Re(cfs) s Sowy = Sy X = Xpwy» 1=
and for TSh-mode: Q = Q;,, ¢ =cL, with ¢ = Re(cﬁ) o = Ssiny s X = Xasiny» 1= g,

Decomposing it on small parameters of frequency displacement y and losses Q" near their poles
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tanK = cotK 8 1
K o o K oenn w'n® T l+iy
with y =20y generalized frequency displacement. Particularly, the relative frequency displacements
oy @ 2, g,y are taken in respect to the f, . = anm /4b antiresonance and

Srrsiom = NG/ P / 4b resonance frequencies of the \?m,m) corresponding elementary mode with odd

(71)

and for the

”(n rony harmonic numbers. Then, for the Y, 1y (1) resonance Srin [ Suy —1=—4K, 2Pk,

Yz (2) antiresonance f, /) —1= 4k5 /7z nlg, -

I B T e ! b al
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Fig. 8 a,b,c,d,e. Complex generalized admittance V = (1$ kz) Y

(TL|TSh)

=i(J7) /( Y% (23) vs. frequency near the basic fundamental n = 1 and thirdn = 3 S-TL and A-TSh

harmonics for the three piezoceramics. Inserted — the real and imaginary parts (conductance, sucseptance)

(3) and actual dispersion ratio

of the V and W characteristics.

S (—F’/U’) in (52) is of the order of 1, the following Statement can be formulated and then is considered

in details for the dispersion characterization at thickness resonances of any kind:
Statement. The ratio of the open-circuit (£°°) to short-circuit (<)’ lateral complex wave-numbers

squared (as roots of HG <S|A>H =0 and H(D <S|A>H =0 characteristic matrices, respectively) for a branch with
‘(QZC' “)2‘ << 1 at least near any pure or coupled thickness resonance is largely determined by the respect-

tive normalized elementary complex admittance ?m,m) in its complex value and frequency dependence.

201 m
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It follows from the Statement that: a) the dispersion ratio near any basic odd-order thickness resonance-

antiresonance coincides with the respective admittance Y

ir1,7sny Tegardless of the presence of any non-basic

thickness resonance; b) near any non-basic even-order thickness resonance far enough out of any basic
resonance the dispersion ratio is constant on frequency depending on the respective effective CEMC. Fig. 8
illustrates the phase and amplitude satisfactory coincidence of the lateral dispersion ratio with the elementary
complex generalized admittance characteristics near the basic 7Z and TS% resonances regardless of the

presence of any non-basic thickness resonance, all under a simplified for representation condition for the

effective CEMC «x,, =k, and x,, = k. (56),(63) . The Statement is a useful practical estimate based on the

Theorem and is a powerful tool for analyzing the interrelated PR excitation and propagation problems.

B1. Pure Basic “S-TL:odd n” and “A-TSh:odd n” resonances.

Such a condition for the best performance is provided, for example, for the set of practical values
én/én =B/, ({5,7,93/3)°, {9,11,13,15}/5)°, ...= (o4 151/ Poua 1)’ » When the odd-order 7Sh- and TL-
mode resonances coincide, respectively, and the dispersion branches near the & -origin are determined then by

the predominant terms with A’ coefficients in (56),(58) and (63),(65).

B1-S. For the pure basic “S-TL: odd n” resonances with ‘tan K<TL>

>>1 when K, = 7y, /2 for odd

n;, =1,3,5..., near the frequency of some “TSh: odd n” resonance with cot K< ~ 0 (far enough from any

TSh)
non-basic even-order 7Sk resonance, as in an example M1<S> PbTiO; for S-TL:3):

S-TL:odd n —~
(o) () T2 = (1-kh) Vi, (72)
2 S-TL:odd n 2 K<TL> 1
é’;:lf basic ~— . . = y (73)
(&) | G (1-x7,) Ky, (_' Y<TL>)
(é/oc )2 |S_;,T£f?dd ! ~ _i . & , (74)
" 4, tank (1)
then at the resonance () and antiresonance (a) frequencies respectively
2 2 k2 2 2
G) = ) 2k (7%)
( )” %) (1_ K‘iL) ( )r T

Near the “S-TL: odd n”’ resonance, decomposing the expressions (73),(74) on relatively small parameters of

loss factors and frequency displacements (71), we have

scloc -2 S—TL:lt?dd n . 4 1
(é"i ‘ >) | basic = |191(2) . an Q<r‘a> l+ I ; (76)
n (rla)
with their absolute minimums
. <sc‘oc> _ . T ngy
min (&, =(1-1i : : (77)
(é/ )<’”> ( ) 2\/2‘91(2) \/Q<r\a>
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where Virla) = 2Q Xirla) is the generalized frequency displacement, the s.c. regime corresponds to the

resonance (r) and the 0.c. regime corresponds to the antiresonance (a) of the elementary admittance \?<n>
with its resonance Q. and antiresonance O, quality factors, and resonance y, = a)/ .y —1 and
antiresonance y, = a)/ @,y —1 relative frequency displacements. For the 7Z-mode [27], O, = Qfs at the

fundamental harmonic n,, =1,and Q, =Qy at higher harmonics with n,, >3, then O, =Q%, forall n,, .

In the S-configuration, a TL resonance is formed by two 1D and mE" dispersion branches in the region of
‘Cm (a) P)‘ <1. As found in [15], there are two frequency points of dispersion singularity near the resonance

(see M1,2,3<S>), where both the branches have equal wave-numbers (intersection) at a certain electrode
resistivity. In a practical view, the dispersion point of singularity determines the range of dispersion linearity
so important for some applications [15]. The singularity characteristics of the pure basic TZ mode can be

analytically derived from the quadratic equation (60) under the condition of a singular solution when its

determinant equals zero with its real and imaginary parts vanish. As a result for ka/ nﬁL >>1, the lowest

“resonance” singularity (*) takes place at the resonance frequency displacement f*/fr(n) -1= —1/2Qr at

P =k, -nﬁL/JZQZC with the joint for both branches lateral wave-number value ¢, = (O.5—i)-nTL/QM/é°2"' ,

and hence is mostly dissipative. The second “antiresonance” singularity takes place at the antiresonance

frequency displacement 1~ /f(n) -1=4k /72' ”n 1 21&2) at P* :kt.,/2/4‘;0 with the joint lateral

wave-number value & (1 0. 5| k, J2A% /A;‘ , and hence is mostly piezoelectric.

B1-A. For the pure basic “A-TSh: odd n” resonances with ‘tan K

aoy| >>1 when Ko, = 7nyg, /2,

n, =1,3,5..., near the frequency of some “TL: odd n” resonance with cot K<TL> ~ 0 (far enough from any
non-basic even-order 7L resonance, as in examples M1,2,3<A> always for A-TSh:1; PZT-54 for A-TSh:3,;

PbTiO; and PZT-35 for A-TSh:5):

(P G T s i) Y @
oy Poseddn 2 Ky 79

({m) | G Ky, | "

(CZC)Z |A7’%Oddné— 2 i ( i\?<m>)' (80)

K (1+ Krg, ) tank g,

then at the resonance () and antiresonance (a) frequencies respectively
sc 2 2 oc 2 2 k2
(&), =gk (&) 2———7—2~ B (81)

1(3) ) (1+ Kisi
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0 ;:,(P..f) a) 064 | é’m(ﬂ f) basic A-TSh: 3 b)
a— basic A-TSh: 1 ) b oo . . .
y l \ I s PZT-54 Fig. 9 a,b. Complex dispersion
s, 05 ~Ca D =200 ..
y j “1 54} . \ . R characteristics ¢, (P, f) (39)
s 0260 ; " : _'." o Z .
! T e o - S.c. near the basic A-TSh:1(a), :3(b)
& oo & . resonances for two quality
B S factor’s Qg values, material
& constants for PZT-5A.
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Fig. 10 a,b,c . Complex dispersion characteristics &, (P, f) (39) near the basic “S-TL:1” resonance with
quality factor Qg =200, material constants for PZT-54 (a), PZT-35 (b), PbTiO; (c). Inserted — the ‘\?m

characteristic with reference frequencies.

)

Near the “A-TSh: odd n” resonance, decomposing the expressions (79),(80) on relatively small parameters
of loss factors and frequency displacement (71), we have

(§<SCOC>)2 |A—TS/1:oddn . 4 1

basic _~ .
m - I191(3) 2 2

i, Ty,

(82)
with their absolute minimums

. <sc‘oc> . i T . nTSh
min (Cfm )<ra> = (l I) : (83)

228 |9
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where Virla) = 2Q<r‘a> Xirla) is the generalized frequency displacement, the s.c. regime corresponds to the

resonance (r), and the o.c. regime corresponds to the antiresonance (a) of the elementary admittance \?<m>
with its resonance (. and antiresonance (), quality factors, and the resonance y, and antiresonance y,
frequency displacements. For the 7.Sh-mode [27], Q, = Q,, at the fundamental harmonic n,,, =1, and

0, =Q,, at higher harmonics with n,y, >3, then Q. =Q,, forall n,, .

In the both cases, each ¢ ° and £° wave-number has a minimum (77),(83) at the resonance and

antiresonance, respectively. The minima are directly proportional to the harmonic number #, inversely

proportional to the square root of the resonance or antiresonance quality factors [9],[27] of the respective
elementary 7L (7Sh) mode, and do not directly depend on CEMC. The numerically calculated dispersion
curves (39) and corresponding elementary normalized admittance amplitude-frequency characteristics are

shown in Figs. 8-10 , which support the analytical results.

B2. Pure Non-Basic (Spurious) “S-TSh:even n” and “A-TL:even n” resonances.

Such a condition for the best performance is provided, for example, for the set of practical values

¢n/ét = {4,63/2)° ,({8,10,12}/4)?, ... = (Mo, 51 [ Pven7,)° » When the even-order TSh- and 7L-mode
resonances coincide, respectively, and the dispersion branches near the & -origin are determined then by the

predominant terms with A3““¢ coefficients in (56),(57) and (63),(64).

rsn| >>1 when K o = 7zn,g, /2,

B2-S. For the pure non-basic “S-TSh: even n” resonances with ‘cot K ( 5h)

Ny, = 2,4,6..., near the frequency of some “TL: even n” resonance with tan K<n> ~ 0 (far enough from any

basic odd-order 7L resonance, as in ex.: M1,2,3<S> PZT-54 and PbTiO; for S-TSh:4,6; PZT-35 for S-TSh:4):

() S 2 Ky Ky o (£2) oo < iK<m> tanK L ey
" ) ! e U (1+2x,)
then (o) J(c) =(1v2nd,)
Supposing —i \?<n> =1 for an even TSh resonance located between some odd basic 7L resonances, it follows

that the wave-numbers ratio is a constant of frequency determined largely by the effective CEMC KﬁSh

corresponding to a 7:Sh (even) resonance. Near the “S-TSh.: even n” resonance for relatively small frequency

displacements (71)

\-2 S—TSh:ev?nn . 4 5 1

C;L non—basic  ~ |19 . - , (85)
( ) 13 ﬁzn%h “1+i y
with the absolute resonance minimum
S—TSh[Z)ev'en n ( ) T n

ml-n ézsc non—basic ~ l—| TSh , (86)

m E

228z /O
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where y =20, Xsiny - 1t is directly proportional to the harmonic number 7, , and inversely proportional

to JQﬁ of the shear resonance quality factor only (Fig. 11 a,b).

12] €a(P, basic S-TSh:6 ie A-TL-
07 é’m(]),f) non-basic S-TSh4 a) _“,‘0.52 12 "M( f)\ ; Han-basic . l'.!] non-basic A-T1:2 C-)
- —_————
- X PZT-54
L ‘\ N P =200
SUECER ]

Real Part Re&
Real Part Re&

] . b T '
01 iF: 03 TR T

5 e~ CREE T T
Imaginary Part Im& a.c.

" o

=
-005 Imaginary Part Im&

Fig. 11 a,b,c. Complex dispersion characteristics &, (P, f) (39) near the pure non-basic S-TSh: 4(a), :6(b)
and A-TL: 2(c) resonances for two quality factor’s Qf]). values, material constants for PZT-5A. The s.c. and

o.c. points lie largely on the same ray shown for three frequency displacements.

B2-A. For the pure non-basic “A-TL: even n” resonances with ‘CO'[ Ky

>>1 when K, = 7y, /2,

n, =2,4,6..., near the frequency of some “7Sh: even n” resonance with tan K<m> ~ (0 (far enough from

any basic odd 7Sk resonance, as in an example M2<A> PZT-35 for A-TL:2):

(& w o (6
1(2)

then (o) J(¢r) =(1-262) .

so that the wave-number ratio is a constant determined by the effective CEMC «7, . Near the “A-TL: even n”

A-TL:even n 2
non—basic ~ K tan K
9 (TL)

1(2)

non—basic  ~ 2 K

tanK

)2 A-TL:even n

(1L)

1
(1z) m . (87)

KT L

resonance for relatively small frequency displacements (71)

_ A-TL:even n

(é/oc) 2 non—basic  ~ ilgl(z) . 4 :g 1

m 2. 2 H
T ng, 1+iy

(88)

with the absolute resonance minimum

A-TL:even n

oc | non—basic

m

VA Ny

=(1-1) =, (89)
2280 \Joi

where y =202 X - 1tis directly proportional to the harmonic number n

min

- » and inversely proportional to

JQ;Q of the TL antiresonance quality factor only (Fig. 11 c). For the electrode resistivity dependence of

the lateral wave-number with a screen effect related to piezoelectricity, we have according to (67):

¢ (@ P)= (;;,;")’2 [1 2’(—“} . (90)

_1+2ivP2
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Summarizing, it particularly follows from the Statement that the resonance ¢ (@) and antiresonance

¢ “ (@) branches of the basic modes go consequently near the origin of dispersion plane, so that their ratio

squared shows classical resonance-antiresonance character. Meantime, as there is no even-order resonances in

the elementary mode admittance frequency characteristic (3), the branches of the non-basic modes go and

both their absolute minima of £ ““ are reached simultaneously (at the same frequency). They both are
Cn

not dissipative. Note, there is equality ¢° =" ° for a non-piezoelectric case with _i\?<TL, -

> IS pure piezoelectric,

located on the same ray (Fig. 11) near the resonance and their difference ‘4“ o

=1.

B3. Suppressed Branch for Coupled Basic “S-TL: odd n” with non-Basic “S-TSh: evenn”,
and for Basic “A-TSh: odd n” with non-Basic “A-TL: even n” resonances.

Any TL resonance (basic for S- and non-basic for A-configuration) is always formed by the respective
mE ™ branch (Fig. 5). For a certain n,, -order 7Sh resonance (even-order for S- and odd-order for
A-configuration), it can be formed in two ways depending on the égg/c'ﬁ ratio: by one of the upper mE*
TSh branches (Fig. 5) — pure T'Sh resonances under the (B1),(B2) conditions; or by one of the lower mE~ TL
branches (Fig. 5) when both coupled nearby 7Sk and T resonances are formed consequently by the same
mE ~ branch under the (B3),(B4) conditions between (68),(69) zeros. In the last case for the S-configuration,

the “pushed out” mE* branch is forming the edge mode [10] of the corresponding order.

As typically ‘Kf K2,

TSh

= ¢ [¢k, €2.3...9, for coincident 7L and TSk resonances 2, = (c;;/cﬁ)n; >

> n?, . In the case of S-configuration, for the non-basic 7, -order “S-T'Sh: even n” resonance K s

wb+| p/ék, = 0.57 n,g, , then the thickness TL wave-number is Ky =057 nTSh/«/é?g/éf4 . As seen from

the expression (56), the effect of the TZ-mode influence on the T:SA-resonance dispersion is largely

determined by the sign and magnitude of the factor (1— 2057 tan K<TL>/K<TL>) . The inverse effect of

the non-basic 7'Sk-mode influence on the basic n,, -order TL-resonance dispersion is largely determined by

the sign and magnitude of the factor (1+ 2059 cot K<TSh>/K<TSh>) with Ko, = 0.57n,, -\Jég /g

Analogues procedure can be performed for the A-configuration based on (63).

Typically the derivative coefficients &, , =1£0.3 of the characteristic equation (14), so that the

parameters 0(213) =1 . After decomposing (68),(69) near the respective n-order resonance (71),

the corresponding frequency displacements satisfying the aforementioned conditions are

Z = _8H<2‘ 3> /ﬂ-znfodd‘eve@ ~ _]7/n<20dd‘even> ' (91)
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Note that the relative resonance frequency interval of an elementary mode fa(n)/fr(n) -1= kz/n2 (71)1s

nearly &° less in magnitude. In common for both S- and A-configurations, it follows as an estimation that any

n,, -order T'Sh resonance is formed by the mE "~ TL-branch if that resonance frequency is located near some
n,, -order TL- resonance inside the interval of its relative frequency displacements ~ (—l/niL +l/n§5h ) :

From the first-derivative approach analysis for the typical for PZT-ceramic interval of the é;; / c'f4 ratio it
follows in particular that:

- the basic “A-TSh: n,,, =1" resonance is always formed by the OE" TSh-branch, and the non-basic

“S-TSh: n,g, = 2" resonance is formed largely by the 1E~ TL-branch common with the basic

“S-TL:n,, =1” resonance;
— the non-basic “S-TSh: n,g, = 67 for ¢5 /¢ e~3.8..5.1 (M2<S> PZT-35) and “S-TSh: n,y, =8 for

o / ¢r, €~6.9...9.0 (M3<S> PZT-54) resonances are formed by the 3E~ TL-branch common with the

basic “S-TL: n,, =3 resonance, otherwise they both are formed by the respective mE* TSh-branch, m=6,8 ;
— the basic “A-TSh: n,g, =37 for ¢ /¢t, €~ 2.0..4.0 (ML<A> PbTiO;) and “A-TSh: n,g, =5 for

c';;/c'ﬁ e~5.8...11.0 (M3<A> PZT-54) resonances are formed by the 2E ~ TL-branch common with the

non-basic “A-TL: n,, = 2” resonance, otherwise they both are formed by the respective mE* TSh-branch, m=3,5.
The effect of transient conditions can be illustrated in M2<A> PZT7-35 for the “A-TSh:3” and “A-TL:2”

resonances.

Due to separation of the 7L and T'Sh modes influence on the dispersion as factors in the first-order deriva-

tive approach, as seen from Fig. 8a,b for the basic “S-TL: 1” resonance, there is no distortion from the 7.SA-
mode in the dispersion W =i ({;C)Z/(g“,‘;”)z characteristic, and it fully follows the elementary admittance
Y

L) According to the numerical analysis conducted, the coincidence of the dispersion #- and admittance

V-characteristics takes place for both amplitude (typically no more then several dB) and phase representation.

B4. Exactly Coinciding Basic “S-TL: odd n” with non-Basic “S-TSh: even n”,
Basic “A-TSh: odd n” with non-Basic “A-TL: even n” resonances.

B4-S.  For the basic “S-TL: odd n,, ” and non-basic “S-TSh: even n,y, ~ resonances with ‘tan K<TL> >>1

and ‘Cot K, = 7n,, 2 for even

>>1 together, it follows K<u> =7n,, /2 forodd n, =1,3,5... and K<

7Sh) 7sh)
n., =2,4,6... . Such a condition is provided, for example, for practical values éfs/éf; =~ (2/1)?,
{6,8}/3)*, ({8,10,12,14}/5)°, ... = (even n,y, /odd n,, )2, when an even-order “S-7Sh: n” and an

odd-order “S-TL. n” resonances coincide, respectively. The dispersion branches near the & -origin then are

determined by the predominant terms with A}“°“ coefficients in (56),(59) as follows:
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. ve 2 se 2 S-TL:odd n - e e .
| (é/m ) /(é/m ) |S-T§&h: evenn — (A /A ) <TL> ! (92)
X -2 S-TL: odd n COt K<TSh> * tan K<TL> L~
sc & ~ _ASC A
(é/m ) |S-TS/1: evenn 41 K<TS;,> . K<TL> ( I Y<TL>) ! (93)
—2 STLoddn CotK g -tankK
C’ZC - 8: even n = _éoc ' (94)
( ) |s TSh: 1 K(TSh) 'K<TL>

Decomposing (93),(94) on relatively small parameters of loss factors and frequency displacement (71), when

anon-basic 7Sk resonance COtK ,,, — oo coincides with a basic 7L antiresonance tan K, — co with

TSh

f(‘) = ﬁ(TSh:even n) = f;z(TL:odd n)? then

é/()C
m

S-TL: odd n
antlres . nTL nTSh (95)

i+ ,
STSh even n 8\/? ,/Q33 Q44 y

where y =20y and Q here is the mean of Oy, and Q,; . It behaves linearly (Fig. 12a) on the relative

frequency displacement y = f/f0 —1 (71), is pure imaginary at the T antiresonance with its absolute

minimum value ever possible proportional to 1/Q . For the s.c. wave-number frequency dependence

S-TL: odd n y2a
g anives. " i My (1+i2Qf4;c)-{l+i2Q£ (}ka %) } o (99)
S- TSh even n 8 ,ASC “ ,Q33Q44 7s nTL

with its absolute antiresonance (a) and resonance () minima values corresponding to 1, Q = <Qf4 ‘ Q3g> ,

respectively, for k°Q >1 (Fig. 12a)

S-TL: odd n
antires

min (£ ‘ = (+1-1) Sy @7)
( ) < ‘ > S—Téﬁg}:: even n 4 éic \/@

which is proportional typically to 1/\/5 and additionally to CEMC.

Analogously, when a non-basic 7:S% resonance cot K (rsi) > © coincides with a basic 7L resonance

TSh)

‘\?<TL> = ' (t10dam) = Jo(rsi even ny @Nd jOiNt frequency displacement y = £/ f; 1, then
S-TL: odd n 2
sc res. n n H
e ‘ M s (_ +y) , (98)

" STSh even n 8\/E \/ Q33Q44

where y =20y and Q here is the mean of Qy, and Q,, . For the o.c. wave-number frequency dependence

STrLesoddn Ny Mg, (l—i—iZQE){)'{l"'iZQD (}(—kZL} } (99)
~ 44 33 ’
. TSh oven n 8 ’ oc m t 71'2]”172"L

with its absolute antiresonance (@) and resonance () minima values corresponding to +1, Q = <Q3D3 ‘ Qf4> :

é’()()
m

respectively, for k°Q >>1 (Fig. 12b)

S-TL: odd n
res.

Mo (100)

ool g, 2O T B

min (
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Fig. 12 a,b. Complex dispersion characteristics
¢, (P, f) (39) near the basic “S-TL:1” and

non-basic “S-TSh:2” resonances with their
“antiresonance” (a) and “resonance” (b)

coincidence. Material constants for PZT-35

D:

type, Q; =200, ¢r, 107 =5.82(a),5.03(b).

Y

Inserted — the (L)

characteristic with the

reference frequencies.

For both above cases, the maximum (“peak”) values of |Im ¢ m| are respectively (k’Q >1)

peak é/}iSC‘OC>

antires. ‘ res. .
&

S-TSh: even n
=1

S-TL: odd n ) 1

A<S("OC> 2nTL

Rrsp 1,2

(101)

The exact coincidence of the “S-TL:1” and “S-TSh:2” resonances provides (98) extremely low ~ 2/Q

completely imaginary s.c. lateral wave-number at the thickness resonance with decay distance xo/2b ~Q/4,

which in practical view can afford sufficiently widened effective radiating surface of a transducer. From the

approximations (54),(55) it follows for the coupled case that the absolute minimum in (95) and (98) is near

equal to the product of respective minima (77),(86) and (83),(89) for the pure basic and non-basic modes:

ming,

B4-A. For the basic “A-TSh: even n, ~ and non-basic “A-TL: odd n,g, ~ resonances with ‘tan K<

and ‘CO'[ K

(7z)

fully
coupled ~ mln é’ X
m

>>1 together, it follows K, = 7ngg, /2 forodd n,g, =1,3,5... and K

pure
basic min é’mz

pure
non—basic

(102)

rsny| >> 1

(my = 7Ty, /2 for even

n, =2,4,6.... Such a condition is provided, for example, for practical values c's’;/éf4 ={3, 5}/2)2,

({7,9,113/4)?, ... = (odd n,y, /even ny, )" , when an odd-order “A-TSh: n” and an even-order “A-TL: n”
resonances coincide, respectively. The dispersion branches near the & -origin then are determined by the

predominant terms with A7’ coefficients in (63),(66) as follows:

(o) /(e

A-TSh: odd n

-2
(éx sc) | & _
m A-TL:evenn —

) |

A-TSh: odd n o o —
A—Ti‘: even n = (él /él ) : Y<TSh> ! (103)
cotK, ., -tanK
= -Ay— SON (104)
K(TL) ) K(TSh>
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e\ 2 (ATShzodd n ,. cot K<TL>~tan K<m> - =)
(gm ) |A-T§:evenn ;_él ) K K .(_IY<TSh>) : (105)

(rr) " "N(zsh)
Decomposing (104),(105) on small parameters of losses and frequency displacement (71), when a non-basic

TL resonance COtK ;,, — co coincides with a basic 7Sk resonance tan K o, — o0 with fo = £, 7 000y =

= J(xsh: oda ny » thEN
A-TSh: odd n 2

é/sc )es . nTL nTSh , (106)

" ATL even n 8\/E m

where y =20y and Q is here the mean of Q5 and Q,, . It behaves linearly on frequency displacement

= f/fo —1 (71), is pure imaginary at the 7:Sh resonance with its minimum absolute value ever possible

proportional to 1/Q . For the o.c. wave-number frequency dependence

o A- T;vh odd n 7l n.n ] . 4
c ‘ es. L TL TSh (1+|2Q£;5){1+|2Qf4 {Z_kaTH (107)
7T Mg,

A- TL even n 8\/F \/ Q33Q44

with its absolute antiresonance (a) and resonance () minima values corresponding to 1, Q = <Qf4 ‘ Q3g> ,

respectively, for &, 0 >1

A—Tshi odd n n
min (gnjf) b . ; 4 \/F \/ﬂ Kis (108)

Analogously, when a non-basic 7L resonance CotK ;,, — oo coincides with a basic 7 antiresonance
Y,

asny = O With fo = £ 1. cvenwy = Suczsioaa ny @0d joint frequency displacement y = f/f, -1, then

A-TSh: odd n 2

Ny Mg (109)

oc antires.
é,m ‘A TL even n 8 AOC A [ I +y
Q33Q44

where y =20y and Q is here the mean of O, and Q,, . For the s.c. wave-number frequency dependence

ol amtren o 7t nyn . . 4
el Al (142087141205 7+ —r | | (110)
T Arg,

A- TL even n 8 ’ qc A ,Q33Q44

with its absolute antiresonance (a) and resonance () minima values corresponding to +1, Q = <Q3g ‘ Qf4> :

respectively, for &, 0 >1

A-TSh: odd n
antires.

~ Ty (111)

min (é/“)<ar>‘A_T<§:evenn = +l_| 4\/F \/_ 15

For both above cases, the maximum (“peak’”) values of |Im 4 m| are respectively (k5 Q >1)

A-TSh: odd n l
res.‘ antires. . &

n
Jontres. S (112)
A-TL: even n \/ éﬁ””‘@ 2ng,

peak é,’ioc‘sc>
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IV. CONCLUSION

The 3-D equations of linear piezoelectricity, including electro-mechanical damping in solid and resistance
in electrodes, were used to obtain solutions for lateral dispersion characteristics of descending plane harmonic
waves of arbitrary direction in an infinite thickness-polarized piezoceramic plate with traction-free surfaces.
The effects of cumulative energy dissipation on the wave propagation under regimes raging from the s.c.

condition through the relaxation RC-type dispersion resonance to the o.c. condition are examined in detail for
PZT piezoceramics with three characteristic values of the 7L-mode energy-trap figure-of-merit c'gg / éf4 -

less, near equal, and higher 4. The symmetric and antisymmetric eigenmodes of 7L up to 3" harmonic and
7Sh up to 9™ harmonic vibrations of odd- and even-orders were analyzed analytically and numerically.

All branches can not be pure real any longer due to dissipation and significant characteristic changes of the
dispersion curves occur mostly near the cut-off frequencies inherent to non-dissipative waves. Varying the
dissipation parameters of internal loss and electrode resistance, the interaction of different branches was
demonstrated — deformed and inter-connected dispersion branches with singularities take place due to
acoustical and electrical coupling between surrounding regions of the plate.

The electrode resistivity effect is primarily described by the relaxation time parameter z of unit surface
running electrode resistance and PR capacitance. The extracted dispersion surfaces are located between and
connect the respective classical limit dispersion s.c. (ideal electrodes) and o.c. (electrodeless) branches of
planar, 7Sk and 7L modes, and “electric potential” branches. The calculated dispersion dependences on
frequency and electrode resistance are found to follow the universal scaling formula similar to those for the
dielectrics characterization. Represented as a Cole-Cole diagram of the complex lateral wave-number, most
dispersion branches exhibit a Debye-like semicircle dependence with extremum at @z =1. The lowest

“potential” branch, going out from the wave-number origin at a frequency out of any thickness resonances,
obeys the modified Devidson-Cole dependence linear as (1— i)\/a)r for relatively low electrode resistances,

which corresponds to the laterally uncoupled elementary space-regions. For the basic TL resonances of any

order, the dispersion branch slope near the origin follows the character of the corresponding elementary TL-
mode admittance: with the direction (1— i) for its capacitive character out of the resonance-antiresonance
frequency interval, (—1—i) for its inductive character inside the resonance-antiresonance interval, and

(O - i) exactly at the resonance and antiresonance frequencies.

Stated as the Theorem, the determinant ratio of the o.c. to s.c. characteristic matrices in the S- (A-)
configuration in the limit of zero lateral wave-number equals the corresponding elementary normalized
complex admittance of the TL(7'S#)-mode. The dispersion branches of any thickness resonance tend to reach
the origin with the absolute minimums inversely proportional to the quality factors and respective first-order
derivatives of the characteristic equation. The developed first-derivative approach based on characteristic

matrices differentiation reveals a simple presentation and explanation of the coupled TZ-7'Sh modes
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dispersion behavior near the thickness resonances, showing the close connection between the propagation and

excitation problems in a homogeneous medium. Separating the 7L and TS% resonance factors, it was stated
based on the Theorem that the ratio of the o.c. to s.c. lateral wave-numbers squared near the basic and/or non-
basic thickness resonances is largely determined by the corresponding complex elementary admittance. As a
consequence, the frequencies and bandwidth of the resonance dispersion minimums coincide with those for
the elementary admittance; for the basic modes, the ratio of their consecutive s.c. and o0.c. minimums is
determined by the ratio of the resonance and antiresonance quality factors of the elementary admittance; and
for the non-basic modes, the ratio of simultaneous s.c. and o.c. dispersion minimums is determined by the

corresponding effective CEMC. The exact coincidence of the basic and non-basic thickness resonances for
certain c';;/c'ﬁ ratios provides minimal resonance lateral dispersion ever possible.

Real PR electrodes are resistive — that adds extra energy losses and hence changes the wave dispersion
relationships. It especially becomes significant for up-to-date thin high-frequency PRs with large major
surfaces when the lateral vibration characteristics distribution is critical. The developed approach can be
applied to a piezoceramic plate with polarization direction along the major surfaces (a “shear” plate), and

to piezoelectrics of different symmetry.
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Appendix | :  Proof of the Theorem
I-A. Proof for the S-configuration (basic 7Z-mode):

The determinants of the matrices |MS| and [NS| (24)-(26) with generalized elements p, , are both of

the same dimension and are finite at £ — 0. They can be represented with non-zero elements as

Py P O
HMSin -0 =k =|py Pn O :(pn P2 — Pip le)pss , (1-1)
P P P33
-pn O 0
HNSijuézo =Uy=| Py Pn O|=—PubPnps, i,j=123. (1-2)
P P Pa3
Then IMs)-_ —(1—&-&j , &z—fi"s , (1-3)
”NS” £=0 P P P11 C33és
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- 1 ~
E S E E E .S
Pia _ Caaba3 | 4, G 4. ) ) 1:a‘n(K(Z))| 14 5. o) — 14 3 (1-2)
=72 ~ ’ ~ 2
P2 €33 e A, K 50 €3 A, £50 €33

I-B. Proof for the A-configuration (basic 7Sk-mode):

The determinants of the matrices [MA| and |NA| (24)-(26) are both of the same dimension and at & — 0

the expressions F (&) =|[MA|-& and U(&) = (gssg/gli)HNA” - £ are finite. They can be represented with

non-zero elements «, ; as

MA, ¢ MA, MA, ay @, 0
IMA|-£=|MA,,-¢ MA,, MA,| . (HMAUH-g)ézoz 0 a, O|=afaya,, (1-5.6)
MA; -& MA;, MA,; dy Qg dg

NA,, & NA, NA;-¢ N NA . a; 0 a,
”NA” = NA21 : 571 NA22 NA23 ‘572 [u]
£=0

& 4
NA;-& NA; ¢ ? NA;, ayz 0 ay
NA a’l a, a
Then [52 . ” ” =L (1_ﬁ. = (1-7)
”MA” o A gz Ay
oc N
Qa1 _ _ G365 Gy __éu s _ tan(K(3)) (1-8)
sc E S ! sc N
a;y Ca4€33 ayy &3 g3 e K £550
2 2 2 | E_S .
As K, (0)= K K (0)=K (75 and K’ =e;, /6'336‘33 ki =e; /6‘446‘11 , the Theorem is proven.

Appendix Il:  Proof sketch - Basics for the Statement substantiation:

Generally the thickness K, wave-numbers (14) can be represented near the fz—origin as

(,)(5 ) K(,)(O)_lgl(j) '982 _(1/2)‘92(j) '(682)2 _(]/6)'93(j) '(52)3 o (11-1)
where K, »0)=0, (2) 0)=w pbz/c33 = > K 50)=w pbz/c44 = TS1> (11-2)
4= {K(Z/)} , (0) is the i-order derivative, j =1,2,3. In an isotropic non-piezoelectric case with the
only single dielectric permittivity, elastic and Poisson constants, the derivatives 91(]) =1, 32(1) =0. For the

polarized isotropic piezoceramics under consideration, 3, = &) /&5, and ‘191(2’3)‘ =1+0.3 depending on
elastic, dielectric, and piezoelectric anisotropy, and they are independent of frequency (exact expressions):

2
E
1+ Ci3 n ex (e +e)

ct 2e.e gl ct c, E3C

g 44 33615 11 k2 Cag 44 33Cas

+—
12) — S D D D/ E_q

033 E33C33 ‘933 C33 Ca3/ Cyy
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2
E

|:1+013+ eg; (e +315)}

E 2 E S _E

9. = oy (e teps) Cu4 E33Cuy

=, - . (11-3)
13) E S E D/ E_q
Cua E33Cu4 C33/Cus

The second-order derivatives 9,

presence of piezoelectricity (the parameter of anisotropy ® =0 for isotropic non-piezoelectric case), and
‘192( j)‘ ~1 for the lowest fundamental thickness resonances, and is much less 1 at higher harmonics, so that

2
s E 2 s D
g —2%u_ Cu (e +es5) | k.~ |51 G g (11-4)
2 — S 2 pb? S E 15 s E Tt .
€33 O P €530 33 Cag

The third-order derivative o @-[cﬁcg/(a)zpbz)zl

€«@®- (cﬁ/a)zpbz) are inversely proportional to the frequency squared in

Glossary
Q, &, — electric potential and vacuum dielectric permittivity
o, Qﬁ’D v Oy @ - standardized material, elastic constant’s, PR resonance (antiresonance) and

generalized quality factors

cf/ID (Sf/ID) '€ (hu ’dl;,-) ,gf]is — complex piezomaterial constants (real ones are with an upper point)
P, V= 5151/5333 — material density and dielectric anisotropy parameter

s, & - effective elastic compliance and dielectric permittivity

K, , kg (K), Ky, k, - complex CEMC (generalized notation K with its real value k)

D, ET,S — electric field induction and strength, mechanical stress and strain

C{TS‘;M} (6’0 =CJ = 8333/217) — PR capacitance (unit surface value)

w=2rf,y, yv=20y - angular frequency, relative and generalized frequency displacements

S f..n — resonance (r) and antiresonance (a) frequencies, harmonic order of the elementary admittance Y
x,z(x,z) and u_,u, — spacecoordinates (normalized) and local respective displacements

Y, ¥, 2b, P - length, width and thickness of an elementary PR, and its polarization direction
|B| — characteristic matrix of motion and charge equations

‘(I) <S|A>‘, ‘G<S|A>‘ and HM <S|A>H : HN <S|A>H — s.c. and o.c. characteristic matrices of boundary conditions,
and corresponding determinants for S- and A- configurations, respectively

A{Z’xlw} Z{ZYW} , Izl{z,x,rp} ), L]. — characteristic amplitudes and weighting coefficients in eigen-mode solutions
K(n) , K(m) (K) — wave-number of 1-D elementary TL and T:Sh vibrations (generalized notation)
?<TL>, ?<rs11>’ ? — normalized complex admittance of the elementary (non-coupled) 7L and 7Sz mode,
and their generalized notation
K, & — coupled complex thickness and lateral wave-numbers
() .
19[(]) — i-order derivative {—K(Zj)}](:2 of the j-order wave-number, j=1,2,3

¢ (@, P), (@), (@) - m-branch lateral complex wave-number, s.c. (P =0) and o.c. ( P = o0 ) dispersion

m
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eigen-values
unit surface resistance of the electrode, its thickness and unit conductance

wave-length, velocity and characteristic decay parameters

— PR impedance, its phase, resonance/antiresonance resistances (unit surface values)

|X| , ||X||, H|X| — notations for a complex X matrix, its determinant and determinant’s absolute value
X, X' (X", 0X/ox — notations for a first-order x-derivative of some X function

F(&), U(&) — generalized s.c. and o.c. characteristic matrix’s functions of the lateral wave-number
A, 070 — coefficients in first-order derivative representation of the characteristic matrices

Dijr 4y — elements of generalized F; and U, matrix’s functions for S- and A-configurations
P? = bza)éo Eel =T, R)z =W,T, T= bzkeléo - relaxation parameters of electrode resistivity influence

a, f — relaxation parameters of the Havriliak-Negami equation

i=v-1 — imaginary unit

i, j — integer numbers (as subscripts)

S-TL:n , S-TSh:n — n-order basic 7L (odd 7, ) and non-basic 7Sh (even n,g, ) resonances in S-configuration
A-TSh:n, A-TL:n — n-order basic 7Sk (odd 7, ) and non-basic 7L (even n,, ) resonances in A-configuration
K K — effective CEMC for “A-TL: even n” and “S-TSh: even n” resonances, respectively

TL TSh

&y (]

1

— “and” and “or” signs with respective elements

Upper point denotes a real value of the complex parameter.

D
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Dependences of Dispersion Characteristics on Electrode Resistivity and
Frequency for the Symmetric S-configuration with Basic TL-Mode.

PCM PbTiO3

&M -2iP*NS|=0 = &=£(@.P) with Im{ <0

Losses:
G = o (141/0)
Q=100 (solid line)
(05=19,05=-9)
=900 (dash line)

Constants :  cf, /e (cf /e, ) =2.36 (2.98)

&7 =144 10" Nfm®
é8=33 10" N/m*
Fiyy = -0.42 10"V fm

&5 =168 10" N/m’
&f =29 10" Nfm?
iy =5.45-10°V /m

¢E=61 10" Njm*

Jiys=1.5910° ¥ fm

& 5, =134 & fa=212 (@f="11, ¢E=830)

- F.=027 k,=0.182 .
k= 0458 5= 0279 p P b0l R,
Notations:

mE* = mebranch of the TSheset related to (n = m+ 1) -arder shear thickness resonance,
mE: " = m-branch of the TL-set related to (= mi-order longitudine thickness resonance,
m@ — m-branch of the *potential” set,

R — "planar” branch,

with odd numbers m=1.35.. for S- configuration.

Relative Frequency Displacements: [:EM+ l]ﬂ = [?fm\ + 1] ﬁ

'r(??ﬂ‘}:f){xlcmh_l Jrrn]=f;'(.!c1|(m_1

I S [ oz b \[3

S = 205 p 1= 205y p

Frequency Scale: atl it
5 it i3
. vl g
-1 08 [] [ 1 s ] T i

F 0= peordder TSh-resonance. v n — meorder Tl-resonance.  aft)n — m-order TL-antiresonance

) = 100 ( 200}
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Dependences of Dispersion Characteristics on Electrode Resistivity and

Frequency for the Symmetric S- configuration with Basic TL-Mode.
PCM PZT- 33

& ms|-2iP - NS|=0 — =L (@.P) with Img <0

Losses:
o = Ean (144/0)
O =100 (solid line)
(0f~0f=350)
O =900 (dash line)

Constants : ¢ [¢5(¢h /) =349 (4.35)

¢ =18.9-10" N/m’
&5 =81 10" N/m’
fiyy =28 -10°V /m

&8 =172.10" Nfm’
éh=90 10" N/m'
iy = 044 10"V fm

é5 =5.4410" Nfm®

Bis=15 -10°V/m

& /5, =540 &) /5, =550 (Qf=0f=720)

= k.= k= 0.408 PR
k= 0445 5= 0.449 Ko P= b2l R,
Natations:

mE* - me-branch of the TSh-vet related to (n = m+1)-order shear thickness resonance,
mE" = m-branch of the TL-set related to (n=m|~order longitudinal thickness resonance,
m@ — m-branch af the “potential” set,

R = “planar” branch,

with odd mumbers m=13.5.. for S- configuration.
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Dependences of Dispersion Characteristics on Electrode Resistivity and
Frequency for the Symmetric 3- configuration with Basic TL-Mode.
PCM PZT-34
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Notations:

mE* = m-branch of the TSh-set related to (n = m+{)-order shear thickness resomance,
mME" = m-branch of the Ti-set related to (n=m-order longitudinal thickness resonance,
m® = m-branch of the "potemtial” sei,

R = “planar* branch,

with odd mimbers m=135.. for §- configuration,
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Schematic of the dispersion surfaces dependences on electrode conductivity and frequency
Jfrom static up to the fundamerntal thickness resonance: arrows show P changing,

sings <= indicate the regions of dispersion singularities




41

PCM-35 mod

POTIOZ

15
Q.85
there's -3¢ . the same ) there's -3.25 8 there's 270 e
-2 1 1 1 1 - L | | | - 1 1 1
08 -06 0.4 -02 02 03 oz 08 04 -02 0 02 03 08 -06 -04 -02 0 02 03
30 T T T T 30 T T T T 30 T T T T T
Afm Al
20
10 - B
i - 4
-10 - 4
0 L
s Is with it
-30 — 1 ! 1 | | A
-08 -08  -06 04 -02 i 02
2 T T 2 T T T 2 T p; T
Reey, PZT-54 Reey PCM-35 rmod Rety 7 PHTION
P
Trteg, Trey, Taviey, o Tlex
s Hax SRS T USE -
Resy, Resy, o flex Resy,
Trus, Ims, // Ims, # ’
1 I s P N shaar ¥~
shear { / shear 1 g
M?// 7% J0sE _
] - 0 — e 7 = = —
’ Q= 100 g
s b 05 s F b
s 4 gt B i
s T H-15F sk i
2 a1 2r o2 -
shear 3
shear 3
-5 F 250 shear 3 —-asth -
un)
-3 G 3 | L | )
-1 -05 ] 05 1 -1 -03 ] 05 1
A-configuration
- 55 I I I il 2 : : ,
-1 05 [ 05 1
40 e T T T 40 N T T T , k15=0.279
B(x)-A{x) k15 = 0.687 i K15 = 0,449
135 - B{n) E B{n) ) i T
- - Lot 4 Ciny
- J% o[ e ) /
5 o e’ f —]
- % - ok —-ﬁ—f"j L i P
1 R I f
m=9.6 'f,‘ m=49 frf m= 67 |
+ (.04 dB 5 + 004 dB -0 +0.04dB =
0 ! 7 -0 i B I
r!g |
k - I I 1 n)
. | | | ) - ) ) | W -1 s i 05
1 03 0 o3 ! -1 05 i 05 1



